Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсный лазер

    Человечество давно оценило и широко использует энергию удара от примитивных молотков и стенобитных орудий до современных многотонных молотов, устройств направленного взрыва, импульсных лазеров [29]. [c.62]

    Для селективного воздействия большое значение имеет возможность перестройки длины волны, излучаемой лазером. В работе [11] описан перестраиваемый импульсный лазер на СОг с поперечным разрядом при атмосферном давлении газа. Средняя выходная мощность варьируется в пределах 0,1-2 МВт/см площадь сечения пучка составляет 8 см . Резонатор этого лазера представляет собой разрядную трубку длиной 2,43 м, по которой прокачивается газ со скоростью 1,4-108 см /ч. В энергетической диаграмме молекул СО2 содержатся два низких колебательных уровня, которым соответствуют волновые числа 1388 и 1286 см 1. В результате колебательно-вращательных переходов эмиссионный спектр содержит линии от 923 до 990 см 1 и от 1023 до 1090 см-1, с помощью дифракционной решетки, размещаемой на конце трубки резонатора, можно настроить излучение лазера на один из необходимых максимумов излучения. [c.100]


    Одной из важных особенностей импульсных лазеров является большая пиковая мощность (см. табл. 7.2). Она в большей степени отражает короткую продолжительность импульса, чем общую достижимую энергию. Например, пиковая мощность 1 МВт у лазера на красителе с длительностью импульса 10 НС соответствует лишь энергии 10 мДж. Для разумной частоты повторения импульсов порядка 5 Гц средняя мощность будет менее 1 Вт. Тем не менее пиковые интенсивности (т. е. число фотонов в пересчете на единицу площади в единицу Времени) действительно очень высоки. [c.182]

    В экспериментах по наносекундному фотолизу обычно в качестве первичного источника света применяются импульсные лазеры, так как разрядные лампы с короткой длительностью импульса дают слишком слабое излучение. В импульсной спектроскопии источник зондирующего излучения также должен быть быстрым. В одной из методик в качестве зондирующего источника света применяется флуоресцирующее вещество, возбуждаемое вторым лазером, который запускается с подходящей временной задержкой. Флуоресценция может иметь достаточно широкий спектр с точки зрения спектроскопии (в отличие от излучения лазера), а ее временной профиль определяется временем жизни. Для наносекундной импульсной спектрофотометрии подходящим источником зондирующего света может быть обычный импульсный разряд с длительностью импульса в сотни микросекунд. При этом в течение пе- [c.202]

    За последние годы в фотохимии развивается новое направление — лазерная химия. Лазерные источники света обладают рядом преимуществ по сравнению с разрядными лампами. Может быть получена большая плотность излучения время вспышки в импульсных лазерах можно значительно сократить по сравнению с лампами с в специальных опытах до с). Кроме [c.305]

    Наилучшими источниками коротких мощных импульсов света являются лазеры. В настоящее время разработано и выпускается промышленностью большое количество импульсных лазеров различных типов. Лазеры, работающие в режиме модулированной добротности, дают импульсы длительностью 10 —10 с, а ]В режиме синхронизации мод — до 10 2 с (см. таблицу). Возможность использования умножения частот ((при прохождении лазерного импульса через некоторые сильно поляризующиеся кристаллы возникает излучение с частотой 2v, Зv или 4v) и лазеров на красителях позволяет получать лазерные импульсы любой необходимой длины волны в диапазоне 250—1300 нм. К недостаткам лазеров следует отнести то, что в результате большой мощности импульсов в образцах могут возникать специфические лазерные эффекты (эффекты, связанные с большой локальной концентрацией возбужденных молекул и их взаимодействием между собой и нелинейные эффекты), и кроме того, в фотохимически активных системах происходит быстрый фотолиз вещества. Характеристики некоторых импульсных лазеров приведены в таблице на с. 209. [c.210]


    Первая из них легко преодолевается путем использования вращения ( 2000 об/мин) образца или быстрого сканирования лазерным лучом по поверхности образца. Вторую трудность преодолеть нелегко, если не уменьшить путь рассеивающего пучка в среде до минимума. Другая более тонкая процедура состоит в использовании дифференциальной спектроскопии КР с вращающейся кюветой, разделенной на две половины, вместе с совершенной электронной системой сравнения. Наличие отсеков для исследуемого образца и образца сравнения исключает необходимость внутреннего стандарта. Вероятность фотолиза при вращении образца также уменьшается. Влияние флуоресценции эффективно исключается лишь дискриминацией сигнала во времени. Методика основана на возбуждении комбинационного рассеяния импульсным лазером с длительностью импульсов порядка нано- [c.776]

    Эффективность подобного рубинового лазера очень мала и обычно не превышает величины 10- Так, например, если газоразрядные импульсы имеют мощность 1000 Вт-с, то выходная мощность рубинового лазера менее 1 Вт-с. Выходную мощность можно существенно увеличить путем использования специальных модифицированных рубиновых лазеров, называемых гигантскими импульсными лазерами (лазеры, генерирующие гигантский импульс) с помощью метода модулированной добротности (<Э-ком-мутация). [c.172]

    Действие лазера на красителе зависит от электронных переходов в возбужденные синглет-иое, а затем триплетное состояния. Лазерный процесс начинается с поглощения света от источника возбуждения (обычно гигантского импульсного лазера или специальных импульсных ламп), в результате чего молекулы красителя переходят из основного состояния (5о) в вышележащие возбужденные синглетные состояния ( , 5) (рис. 10.27). [c.173]

    МОЖНО добиться путем использования источника возбуждения, который достигает порога лазера до начала индуцированного испускания. Для этого необходимы источники света, которые дают мощность несколько сотен киловатт за долю микросекунды (это гигантские импульсные лазеры или специальные импульсные лампы). В последние годы разработана методика контроля концентрации триплетного состояния с помощью химических гасителей и механического воздействия. [c.175]

    Существуют два варианта ЛИФ с использованием непрерывных и импульсных лазеров. Использование ЛИФ с импульсными лазерами представляется более перспективным, поскольку, во-первых, в ряде задач необходимо высокое временное разрешение, которое легче достигается с использованием импульсных лазеров во-вторых, спектральный диапазон, перекрываемый непрерывными лазерами, заметно уже, чем перекрываемый импульсными. Это сильно ограничивает набор частиц, поддающихся регистрации.  [c.122]

    Вероятность двухфотонного перехода пропорциональна произведению интенсивностей /j и /2. В случае одного лазерного пучка это произведение нужно заменить на /2. Чтобы вероятность перехода была ощутимой, нужны большие пиковые мощности. Поэтому обычно для двухфотонных процессов используют импульсные лазеры, в которых достигается высокая пиковая мощность. [c.125]

    Абсорбционный метод является наиболее универсальным, так как действует в широком спектральном диапазоне. Однако он уступает другим методам в чувствительности. Метод ЛАС сочетают с методом ударных волн или струевым реактором. Концентрации активных частиц в ударных волнах обычно достаточно высоки, а универсальность ЛАС позволяет наблюдать одновременно несколько частиц. Сочетание со струевым реактором ограничивает временное разрешение. В ЛАС используют как непрерывные, так и импульсные лазеры. [c.129]

    Значительное увеличение чувствительности ФМД может быть получено при применении вместо ртутной лампы монохроматического лазера и гибких оптических световодов для введения света непосредственно в проточную ячейку малых размеров [74]. При введении конца световода непосредственно в кварцевую капиллярную ячейку на выходе из хроматографической колонки и облучении ее несколько выше по ходу потока с помощью Аг-ионного лазера под углом 90° получена чувствительность на уровне десятков пг для некоторых лекарственных Препаратов [65]. Предложен также лазерный ФМД с двухфотонной наведенной флуоресценцией. Использование импульсного лазера в качестве источника возбуждения позволяет селективно детектировать только те соединения, время жизни флуоресценции которых больше скважности импульсов [66]. [c.276]

    Люминесцирующие производные антрахинона нашли применение в качестве преобразователей энергии для активных лазерных сред в перестраиваемых лазерах на красителях. Растворы таких соединений подвергают облучению светом с длиной волны, близкой максимуму длинноволнового поглощения, а излучают свет с длиной волны, соответствующей полосе люминесценции [57]. Применение различных типов световой накачки - непрерывными или импульсными лампами, импульсными лазерами, использование красителей, обладающих полосами поглощения и люминесценции в различных областях спектра, позволили создать лазеры с разнообразным режимом работы. Лазеры на красителях дают возможность получать перестраиваемое излучение в широком диапазоне длин волн - от УФ до ИК области спектра. На их основе создано уникальное контрольно-измерительное технологическое оборудование, например, флуориметры, атомно-флуоресцентные спектрофотометры, предназначенные для научных исследований и использования в электронной промышленности, цветной металлургии, биотехнологии, экологического контроля окружающей среды. Перестраиваемые лазеры на красителях используют в медицине для диагностики и фотодинамической терапии рака [57]. У этой бурно развивающейся отрасли приборостроения большое будущее. [c.35]


    Лазерные источники возбуждения спектров. Электроразрядные источники возбуждения спектров позволяют анализировать непосредственно только электропроводные материалы, анализ диэлектрических материалов требует специальной подготовки. Лазерные источники дают возможность прямого анализа любых твердых материалов, и для этой цели могут применяться различные лазеры твердотельные импульсные лазеры в свободном и моноимпульсном режимах, лазеры на красителях с ламповой накачкой и др. с энергией лазерных импульсов до 10 Дж в режиме свободной генерации и до 0,6 Дж в моноимпульсном режиме. При этом реализуется плотность мощности излучения до 10 °-10 Вт/см  [c.374]

    В качестве фотоприемников используют фотоэлектронные умножители. Мерой флуоресцентного сигнала в этом случае служит полный заряд в анодной цепи ФЭУ, накопленный за время импульса флуоресценции. Высокая скважность импульсных лазеров на красителях (а 10 -10 ) требует применять стробирующие системы регистрации для подавления шумов электроники и теплового излучения атомизатора в паузах между лазерными импульсами. Время регистрации определяется длительностью цикла атомизации пробы в импульсных атомизаторах или достижением оптимального соотношения сигнал/шум при работе со стационарными атомизаторами. [c.852]

    Использовался непрерывный лазер (в остальных С тучаях применялся импульсный лазер). [c.947]

    Фотоакустическая микроскопия. В фотоакустической микроскопии акустические колебания генерируются вследствие термоупругого эффекта при освещении ОК модулированным световым потоком (например, импульсным лазером), сфокусированным на поверхности ОК. Энергия светового потока, поглощаясь в материале, порождает тепловую волну, параметры которой зависят от теплофизических характеристик ОК. Тепловая волна приводит к появлению термоупругих колебаний, которые регистрируются, например, пьезоэлектрическим детектором. [c.134]

    Если размеры образца малы, например его толщина исчисляется миллиметрами, то для материалов с высокой теплопроводностью допустимые значения Тт составляют менее 1 мс. Хотя даже при высокой температуре такая длительность обеспечивается относительно просто, например применением импульсного лазера [c.824]

    Первые эксперименты по разделению изотопов методом двухфотонной диссоциации были проведены Р.В. Амбарцумяном, В.С. Летоховым и др. [15]. В опытах был применен импульсный лазер на СО2, возбуждающий колебательные состояния молекул №5Нз. Затем осуществлялась фотодиссоциация этих молекул ультрафиолетовым излучением искрового источника света, синхронизованного с излучением лазера. Участки спектра, которые могли бы вызвать диссоциацию молекул [c.179]

    В первых опьп-ах Ф. получали испарением графита в атмосфере Не под действием мощного импульсного лазера. Позднее было установлено, что Ф. образуются при пропускании тока чистого Не между двумя графитовыми электродами при возбуждении электрич. дуга. Возможно, С , присутствует в коптящем пламени (напр., пламени свечи), в продуктах сжигания ацетилена. [c.211]

    Лазе рно-индуцированную плазму используют в качестве источника излучения в атомной спектрометрии с начала 1960-х [8.1-21, 8.1-22]. Обычно используют импульсные лазеры для создания короткоживущей плазмы на поверхности мишени, что предполагает использование детектирования с временным разрешением. Можно использовать лазеры различного типа, включая эксимер-ные лазеры (194 нм, 308нм), Nd YAG-лaзep (1064 нм, 532 нм, 355 нм, 266 нм) и СОа-лазер (10,6 мкм). Современная тенденция заключается в использовании УФ-лазеров. Более детальное рассмотрение лазерно-индуцированной плазмы дано в разд. 8.5. [c.24]

    Луч может быть круглым или прямоугольным. Важным параметром является распределение энергии по профилю луча. Например, энергия может проявлять гауссов профиль. Режим работы лазера может быть непрерывным (непр.) или импульсным (имп.). В настоящее время используют два импульсных режима режим модуляции добротности и синхронизации мод. Для описания импульсных лазеров используют длительность импульса и частоту повторения. Для вьфажения числа фотонов в случае непрерывных лазеров обычно используют мощность (Вт или мВт), тогда как для импульсных лазеров обычно используют энергию импульса (Дж, мДж или мкДж). [c.688]

    Использование в качестве источников света лазеров в этом методе дает следующие преимущества более высокое спектральное разрешение, а следовательно и чувствительность узость лазерной линии излучения быстрая перестройка частоты излучения и ненужность монохроматора. Наиболее целесообразно в абсорбционной спектроскопии использовать непрерывные лазеры. Однако применяют и импульсные лазеры, так iaK их использование позволяет расширить спектральную область источни а света. Для исследования в ближнем УФ и видимом диапазоне используют лазеры на растворах красителей. В ИК-области спектра широко применяют полупроводниковые диодные лазеры. Существуют нелинейные оптические методы, позволяющие получать излучение с разностной (уз = vj - vj) и суммарной (уз = VI + V2) частотами. Если один из лазеров является перестраиваемым, то можно перестраивать частоту излучения V3 как в УФ-, так и в ИК-областях спектра. [c.116]

    На примере определения натрия в графитовом порошке проверена возможность использования резонансной атомной флуоресценции при использовании перестраивающегося импульсного лазера [59]. Применялся лазер на основе красителя родамин 6Ж, накачку проводили излучением второй гармоники неодимо-кадмиевого лазера. Длительность импульса составляла 2-10 с, мощность 10 Вт, ширина линии генерации 0,1 нм. Атомизацию натрия проводили в атмосфере аргона, температура проволоки 1000 С, концентрация натрия была равна 1,2-10 ат/см . Минимальный регистрируемый сигнал флуоресценции 5-10 Дж. Предел обнаружения ограничивался флуктуациями релеевского рассеяния. [c.134]

    Химические лазеры могут работать в импульсном или непрерывном режиме. В первом случае используют относительно химически стабильную смесь реагентов, в которой действием ультрафиолетового излучения или электронным ударом инициируют быструю цепную реакцию, сопровождающуюся испусканием мощного импульса излучения. Импульсные химические лазеры весьма эффективны. Для создания мощного импульса когерентного излучения лазер из смеси водорода и фтора потребляет в 10 раз меньше энергии, чем импульсные лазеры других типов. Действие химического лазера в непрерывном режиме основано на реакциях при смешении химически активных газовых потоков высокой скорости в этом случае происходит быстрая смена отработанных реагентов, и излучение генерируется непрерывно. Применение веществ, реагирующих друг с другом без инициирования (например, атомного фтора с молекулой водорода), позволило создать идеальные химические лазеры, работающие на химической энергии, Дополнительным преимуществом химических лазеров является возможность создания когерентного излучения с высокой мощностью. К этому следует добавить, что химическая энергия, используемая в лазерах, дешевле световой и электрической энергии, А это, в свою очередь, означает возможность создания экономичных и все болег мощных лазерных систем. [c.102]

    С помощью импульсного лазера удалось получить аморфь ые то1м ие пленки кремния, олова и меди. [c.104]

    В настоящее время наибольшее значение в проблеме промышленного использования лазеров на красителях имеет создание эффективных и надежных лазеров накачки. Непрерывный режим работы позволяет обойти возникающие для импульсных лазеров сложности коммутации больших мощностей, но он не отвечает требованиям эффективного проведения многоступенчатого ироцесса возбуждения и ионизации атомов урана из-за быстрого распада промежуточных возбужденных состояний. Возникающая проблема распада возбужденных состояний может быть решена путем применения импульсного облучения атомов при этом задержка импульсов, производящих перевод атомов ураиа на более высокий уровень, должна быть меньше времени жизни атома на предыду-П1ем возбужденном уровне. Типичные интервалы задержек составляют наносекунды, что может быть обеспечено приемами специальной лазерной импульсной техники. Частоту следования импульсов выбирают из условия заполнения рабочего объема атомами урана за время между импульсами. Интервал между импульсами равен размеру рабочего объема (в направлении потока атомов урана), деленному на среднюю скорость атомов. Для длительной работы лазера необходим надежный коммутатор, производящий Ю или более лазерных вспышек за время непрерывной работы. [c.266]

    Если проводимый процесс однофотониый, как, например, пре-диссоциация или бимолекулярные химические реакции, то можно использовать любой подходящий лазер импульсного и непрерывного действия. Для миогоквантовых процессов диссоциации необходимы только импульсные лазеры. По своей природе лазеры являются существенно неравновесными устройствами, и подавляющее их большинство имеет импульсный режим работы. Это оказывается вполне достаточным для лазерного разделения изотопов. Частота следования импульсов лазера обычно определяется из условий полной смены исходного газа за время между импульсами. [c.273]

    В качестве источников зондирующего излучения в недисперсионном ОАГ используются тепловые источники сплошного спектра (нихромовая проволока, нагретая до 700-900 °С штифт Нернста, нагретый до 1400 °С). В лазерных ОАГ — непрерывные и импульсные лазеры, генерирующие в ИК-, видимом и УФ-областях спектра. Модуляция зондирующего излучения осуществляется с помо- [c.923]

    Импульсный метод (flash te hnique) Длительность тепловой стимуляции существенно меньше характерного времени наблюдения нафсв производят с помощью импульсного лазера или импульсной лампы (см. Импульсный ТК) [c.14]

    Люминесцентный спектрометр (рис. 11.12) по существу представляет собой комбинацию абсорбционного и эмиссионного спектрометров, для которых исследуемый образец является общим элементом. Эмиссионная и абсорбционная части спектрометра располагаются обычно под прямьпй углом друг к другу относительно кюветы с исследуемым образцом. Перпендйосулярная конфигурация выбирается для того, чтобы свести к минимуму любое поступление излучения источника на фотоприемник за счет рассеяния пробой или оптическими деталями. Для измерения долгоживущих процессов (молекулярной фосфоресценции) в современных промышленных люминесцентных спектрометрах используют импульсные ксеноновые лампы, в приборах для научных исследований — импульсные лазеры. [c.219]

    РКР — дистанционное определение загрязнений в атаосфере. Схема такой установки приведена на рис. 11.52. В качестве источника излучения используют мощные импульсные лазеры. [c.297]


Смотреть страницы где упоминается термин Импульсный лазер: [c.220]    [c.438]    [c.135]    [c.24]    [c.227]    [c.188]    [c.227]    [c.855]    [c.136]    [c.296]   
Основы и применения фотохимии (1991) -- [ c.142 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

Лазеры гигантский импульсный

УАС-лазер лазеры

Флуоресценция небольших молекул и радикалов под действием импульсных лазеров



© 2025 chem21.info Реклама на сайте