Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксеноновые лампы

    Для освещения территорий очистных сооружений, сливоналивных эстакад, товарно-сырьевых баз и т. п. используются прожекторы заливающего света, устанавливаемые на мачтах. Могут найти применение также светильники типа ККУ и осветительные устройства типа ОУКсНФ с газоразрядными ксеноновыми лампами мощностью от 5 до 50 кВт. [c.149]


    При помощи оптической Накачки (рис. 209, а), которая обычно осуществляется с помощью ксеноновой лампы-вспышки (длительность импульса —10 с), возникает инверсная заселенность уровней по отношению к уровню Mg. Переходам с уровня на Ма соответствуют две красные линии Ri и 7 а- Вероятность этих переходов мала и поэтому при спонтанном свечении указанные линии слабы. [c.522]

    Дуговые ксеноновые лампы высокого давления имеют непрерывный спектр от 190 до 750 нм, являясь прекрасными источниками света для использования в ультрафиолетовой и видимой областях спектра. [c.163]

    В последние годы искусственные рубины стали использовать в качестве основной составной части мощного оптического излучателя — лазера. Его устройство основано на способности искусственного рубина при облучении ксеноновой лампой испускать кванты красного света. Игольчатые пучки световых волн лазеров, обладающие световым давлением в миллионы атмосфер, способны бурить твердые породы, сваривать точечные поверхности, ускорять заряженные частицы и даже передвигать с одной орбиты на другую искусственные спутники Земли. [c.183]

    Современные серийные дихрографы меют спектральную область измерения от 185 до 600 нм. Блок-схема дихрографа приведена на рис. 23. Источником света служит мощная ксеноновая лампа, применяется двойной монохроматор. После монохроматора свет преобразуется поляризатором в плоскополяризованный. За поляризатором расположен блок с кристаллом дигидрофосфата аммония, на переднюю и заднюю плоскость которого подается переменное напряжение. Причем амплитуда этого напряжения должна быть синхронизована с измеряемой длиной волны. В отсутствие электрического поля пластинка кристалла является изотропной. Если же приложить к кристаллу синусоидальное электрическое поле, то поляризация света, падающего на образец, будет периодически изменяться между состояниями с левой и правой круговой поляризацией, проходя через все промежуточные формы поляризации (см. рис. 18). Таким образом, свет после кристалла можно рассматривать как получающийся в результате сложения двух [c.41]

    Схема прибора для измерения кругового дихроизма показана на рис. IX.5. Источником света служит ксеноновая лампа высокого давления. Далее луч света проходит монохроматор и поляризатор. После формирования луча с круговой поляризацией в блоке четвертьволновой пластинки он пропускается через кювету с веществом. Поглощение регистрируется фотоумножителем и далее записывающей системой. Для каждого значения v (или X) в интервале от 185 до 600 нм получают //, h, la и, соответственно, е/. Er и Е или Ae(v) = E/(v)—Er(v) и е. Обычно измеряют Ae(v). При этом [c.200]


    Лазерный микрозонд. Источником лазерного луча являются ксеноновая лампа и стекло с добавкой неодима. Диаметр зонда 10 нм, а диаметр кратера на объекте 35—100 нм. Поэтому объектами исследования лазерным пучком должны быть крупные кристаллы. Метод дает плохо воспроизводимые результаты из-за большого диаметра кратера. [c.153]

    Ксенон широко применяется в производстве ксеноновых ламп, характеризующихся правильной цветопередачей. Ксенон является рентгеноконтрастным веществом, широко используемым при рентгеноскопии головного мозга. [c.228]

    А. определяют в искусств, или (и) естеств. условиях. В первом случае применяют т. наз. аппараты искусств, погоды, осн. элемент к-рых-ксеноновая лампа, излучающая световой поток, наиб, близкий по спектральному составу к солнечному излучению. Т-ра в камере аппарата может изменяться от 30 до 70 °С, относит, влажность воздуха от 10 до 98% в нек-рых аппаратах возможны также дождевание образцов и изменение внеш параметров с заданной периодичностью. [c.213]

    Методы оптич. отбеливания в осн. аналогичны методам крашения орг. красителями (см. Крашение волокон)-, однако для достижения нужного эффекта требуется значительно меньшее кол-во О. о., чем красителей. Водонерастворимые О. о. можно применять в высокодисперсной форме или в виде р-ра в орг. р-рителях. Отбеливающий эффект обычно оценивают визуально на практике можно также измерять интенсивность флуоресценции по спектрам отражения на приборах с ксеноновой лампой. [c.423]

    Эллиптический резонатор направляет почти весь свет от импульсной лампы на рубиновый стержень. При высоких температурах, необходимых для оптической накачки рубина, большинство ксеноновых ламп не могут работать в непрерывном режиме и поэтому являются импульсными. [c.171]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    Источник света, которым являются дейтериевая газоразрядная лампа для длин волн ниже 375 нм и ксеноновая лампа для [c.270]

    Атомно-флуоресцентный метод позволяет определять 10 —10 г вещества в самых разнообразных объектах, а также локальные концентрации в светящемся облаке [158, 159]. В этом методе может быть использована бездисперсионная аппаратура. Для получения атомного пара применяют пламенные и непламенные атомизаторы, в качестве источника света — ксеноновые лампы СВД (предел обнаружения натрия 8 10 г). Лазерное возбуждение атомов натрия в пламени позволило определить на фоне загрязнений атмосферы 10 атомов в 1 см . Для наблюдения флуоресценции натрия используют чаще всего резонансные дублеты 589,0—589,6 и 330,23— 330,30 нм. [c.133]

    Ускоренное атмосферное старение. Основным фактором, вызывающим старение многих полимерных мaтepиaJЮв в атмосферных условиях, является солнечный свет, поэтому почти во всех методах, воспроизводящих эти условия, осуществляется световое воздействие на полимеры. Так как кванты света разной длины волны обладают неодинаковой энергией, то действие их на полимер может быть качественно отличным. Излучение, наиболее близкое к солнечному, дает ксеноновая лампа, которая используется в установках "Ксенотест". Широко применяются также ртутные и угольные дуговые лампы, а также их различные сочетания. За счет большой доли энергии, падающей на ультрафиолетовую область спектра (особенно при использовании ртутных ламп), световое старение идет очень интенсивно, однако его результаты часто не коррелируют с данными естественной экспозиции. [c.131]

    И качестве источника ультрафиолетового и видимого света используют газоразрядные лампы (ртутные лампы низкого, В1.1С0К0Г0, среднего давления, ксеноновые лампы), лампы нака-лпвгшия или лазеры. Для получения монохроматического света служат монохроматические фильтры, выделяющие из излучения источника сложного спектрального состава свет определенной длины волны. Промышленность выпускает твердотельные фильтры (из окрашенного стекла, пластиче-ски> масс) или жидкостные, представляющие собой имеющие цвет растворы. [c.25]


    От выбранных условий проведения измерений очень сильно зависит величина отнощения полезный сигнал/шум (с/щ). Величина с/ш уменьшается (на спектральной кривой появляются все более значительные беспорядочные выбросы) с ростом оптической плотности исследуемого образца, в то время как измеряемые величины а и Ае прямо пропорциональны концентрации образца, т. е. его оптической плотности. Поэтому при проведении измерений необходимо найти оптимальное соотношение между этими взаимно противоположными требованиями к условиям измерения. На качество спектров сильно влияет техническое состояние прибора а) старая ксеноновая лампа дает нестабильный пучок света, который уменьшает величину с/ш б) загрязненность оптических окон, старые, мутные зеркала в монохроматоре также уменьшают величину с/ш. На величину с/ш сильно влияет мутность образца при увеличении мутности спектры ДОВ и КД резко искажаются беспорядочными выбросами, налагающимися на спектральную кривую. Это объясняется тем, что, во-первых, при рассеянии света очень часто беспорядочно меняется плоскость поляризации падающего пучка и, во-вторых, меньшая часть света дрстигает детектора прибора. Рассеяние света частицами образца с входящими в их [c.44]

    Общая схема спектрофлуоримегра. Люминесцентные исследования основаны на измерении спектров люминесценции. На рис. 29 приведена принципиальная схема установки для измерения люминесценции. В качестве источника возбуждения целесообразно использовать источник с непрерывным спектром (например, ксеноновая лампа ДКСШ-200). Однако в сочетании со светофильтрами могут применяться также источники с линейчатыми спектрами (например, ртутные лампы ДРШ). [c.63]

    Помимо ртутных ламп в фотохимических исследованиях широко используются газосветные лампы, наполненные тяжелыми инертными газами, например ксеноном, при давлении 1,5-10 мм рт. ст. и выше. После включения лампа сразу дает 80% светового потока. Полный световой поток достигается после того, как лампа приобретет установившийся тепловой режим. Давление газа при этом возрастает примерно в два раза. Спектр ксеноновых ламп ДКСШ существенно отличается от спектра ртутных ламп. Видимая и ультрафиолетовая части спектра представляют собой интенсивный непрерывный спектр, который простирается вплоть до 184 нм, где он обрезается поглощением в атмосфере. Распределение энергии в спектрах ламп с разрядом в инертных газах данного типа практически не зависит от давления и силы тока. [c.140]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    С изобретением ксеноновых ламп производство кино- и прожекторных углей постепенно прекращается. Б настоящее время прожекторные угли используются в основном только для цепей береговой охраны. Такая же судьба постигла разработанные У. Сваном (1850) и Т. А. Эдиссоном в США и А. И. Бюксенмейстером в России (1880 г.) углеродные волокна для лал1П накаливания. Создание долгоживущих вольфрамовых нитей (1910 г.) вытеснило применение углеродных волокон и из этой области электротехники. В связи с большим за последние тридцать лет развитием исследований и производства у1 леродных волокон и особыми спектральными характеристиками источников света с углеродными нитями можно ожидать возобновления их использования в лампах накаливания. Некоторые работы в этом направлении в настоящее время проводятся в лабораторном масштабе. [c.12]

    I — ксеноновая лампа 2 — моно.хроматор . 3 — поляризатор 4 — четвертьволновая пластинка 5 — кювета 6 — детектор [c.200]

    В качестве спектральных источников света используются, как правило, лампы с широким спектром излучения. К таким лампам относятся ксеноновые газоразрядные лампы, ксеноново-ртутные лампы, излучающие в видимой и ультрафиолетовой области лампы накаливания, излучающие в видимой области, и лампы накаливания с добавками галогенов, излучающие в видимой и ближней ультрафиолетовой области. Современные ксеноновые лампы (ДКСШ-75, ДКСШ-120), имеющие малый зазор между электродами и большую стабильность дуги, наиболее часто используются в [c.184]

    В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача этих ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в ультрафиолетовой области к ксенону добавляют другие газы, например водород или пары ртути. Используют импульсные лампы и с другим наполнением кислородом, азотом, аргоном. Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической лампы. Время светового импульса фотолитической лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии, от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотношения сопротивления R, индуктивности L и емкости С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотношение i = 2 /"L/ . Уменьшение времени затухания х достигается снижением индуктивности соединительных проводов, а также сниже1 м емкости и индуктивности конденсатора (t ]/L ). При этом уменьшение [c.280]

    Как показали наши опыты, при скоростной съемке камерой СКС-1 с частотой до 4000 кадр1сек на цветную обратимую пленку чувствительностью 22 ед. ГОСТа в качестве источника света можно использовать ртутную или ксеноновую лампы высокого давления мощностью 1000 вт (ксеноновые лампы обеспечивают более правильную цветопередачу). При частоте съемки несколько сотен тысяч кадров в секунду (съемка сверхскоростной камерой СФР) источником света может служить импульсная лампа ИФП-800. Проявление цветного негативного материала следует вести в проявителе с солями таллия, увеличивающими в несколько раз светочувствительность фотографического материала в процессе проявления [13, 14]. [c.121]

    В зависимости от длительности импульса и временного разрешения различают установки микро-, нано- и пикосекундного диапазонов. В типичной установке микросекунд-ного диапазона пучок зондирующего света от непрерывного источника (обычно ксеноновой лампы) пропускают через ячейку с в-вом под действием импульса ионизирующего излучения в в-ве возникают короткоживущие частицы, вследствие чего изменяется интенсивность светового потока. Измененный световой поток фокусируется на щель монохроматора, к-рый выделяет поток определенной длины волны, преобразуемый фотоприемником (фотоумножителем-для УФ и видимой областей спектра или фотодиодом для ИК области) в электрнч. сигнал, регистрируемый осциллографом. Таким образом получают кривую изменения оптич. плотности во времени. Оптич. спектр поглощения строится путем снятия неск. кривых при разл. длинах волн. При работе с радиоактивными или легко разлагающимися в-вами обычно применяют электронно-оптич. преобразователи, позволяющие получать спектр (или часть спектра) короткоживущей частицы, а также сведения о кинетике р-ции этой частицы при действии на в-во одного импульса. [c.219]

    Косвенный метод регистрации акустич. колебаний, использующийся гл. обр. для изучения твердых образцов, реализован в пром. приборах. Последние состоят из мощной ксеноновой лампы, модулятора (вращающиеся диски с отверстиями). монохроматора, акустич. ячейки, представляющей собой герметичную полость, наполненную воздухом или др. газом и соединенную акустич. каналом с микрофоном, и системы регистрации. Источником излучения могут служить вольфрамогалогенные лампы, глобары (стержни из карбида Si. светящиеся при наложении электрич. напряжения), лазеры, в т.ч. импульсные. В случае ламповых источников часто осуществляют электронную модуляцию электромагн. излучения. При изучении газов и жидкостей используют прямой метод регистрации акустич. колебаний, а в качестве источника излучения-лазер. [c.388]

    Для измерения ДОВ и КД используют спектрополя-риметрыи дихрографы. Они имеют устройство, аналогичное поляриметру, с тем отличием, что источник света (ксеноновая лампа) в них сочетается с монохроматором, позволяющим проводаггь измерения в области 1000-175 нм. В дихрографах имеется также устройство для определения дихроичного поглощения (измерение Де) или устройство ддя преобразования плоскополяризованного света в эллиптически поляризованный (измерение ф). Приборы снабжены автоматич. фотоэлектрич. регистрирующим устройством. [c.274]

    Помимо УФ-детекторов, с недавнего времени выпускаются также флуоресцентные детекторы. Отличия от детекторов ВЭЖХ заключаются в основном в длинах волн источников света. Кроме обычно используемых дейтериевой и импульсной ксеноновой ламп предлагаются также существенно более дорогие лазерные системы, причем [c.39]

    Подробно обсуждено влияние органических растворителей на результаты атомно-абсорбционного анализа сточных вод [803]. Показано, что если концентрация органических растворителей много меньше 0,1 %, то нет влияния на абсорбцию натрия в интервале концентраций 0,1—5 мкг/мл. Приведены данные об определении натрия методом атомной абсорбции при применении монохроматора высокого разрешения Span 101 [870]. Пределы обнаружения натрия при использовании линейчатого источника света — лампы с полым катодом — и источника сплошного излучения — дуговой ксеноновой лампы — [c.127]


Смотреть страницы где упоминается термин Ксеноновые лампы: [c.184]    [c.185]    [c.189]    [c.132]    [c.44]    [c.185]    [c.59]    [c.150]    [c.283]    [c.522]    [c.58]    [c.147]    [c.411]    [c.613]    [c.270]    [c.275]   
Препаративная органическая фотохимия (1963) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Андреев, В. Е. Гаврилов. Электропроводность импульсного разряда ксеноновых трубчатых ламп

Ксеноновая лампа и излучение дневного света рис

Ксеноновая резонансная лампа, для фотохимии

Ксеноновые лампы Ксилол

Лампы

Лампы высокого давления, ксеноновы

Лампы ксеноновые дуговые



© 2024 chem21.info Реклама на сайте