Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Когерентное излучение

    Стойка с оптическим квантовым генератором (ОКГ) предназначена для настройки светового луча в соответствии с требованиями технологического процесса. Оптический квантовый генератор, закрепленный на основании теодолита, устанавливается на подвижном столике механизма горизонтального перемещения, кронштейн которого имеет возможность перемещаться вертикально по винту стойки. Конструкция стойки обеспечивает лазерному визиру необходимые движения при проведении разметочных работ в корпусе колонного аппарата. Оптический квантовый генератор используется в качестве источника монохроматического когерентного излучения, позволяющего получить параллельный пучок света. Прибор в комплекте состоит из оптического квантового генератора и блока питания. Работа с прибором должна проводиться на основании паспорта и инструкции по эксплуатации. [c.212]


    Излучение электромагнитных волн может отличаться от других излучений такой характеристикой, как когерентность. Некогерентным является тепловое излучение нагретых тел и плазмы, когерентное излучение создается оптическими квантовыми генераторами - лазерами. [c.91]

    По своим спектральным характеристикам полученные продукты могут быть использованы в качестве материалов высокого разрешения для дальнего УФ, в частности, для источников когерентного излучения эксимерных лазеров КгР (248 нм), АгР (193 нм), РР (157 нм). [c.54]

    Благодаря высокой мощности лазерного излучения возникают возможности использования нелинейных эффектов родственных многоквантовым процессам, обсуждавшимся в разд. 3.9. На этом базируется методика удвоения частоты излучения одиночного лазера и смешения частот излучения двух лазеров в определенных кристаллических диэлектрических материалах. Нелинейные процессы в газах позволяют генерировать когерентное излучение в спектральном диапазоне, частично перекрывающем область вакуумного ультрафиолета (до длин волн около 100 нм). [c.184]

    Ниже мы рассмотрим индуцированное излучение, которое когерентно излучению стимулирующему. [c.434]

    ВЗАИМОДЕЙСТВИЕ МОЩНОГО КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ [c.437]

    Полупроводниковый лазер. Применение в квантовой электронике полупроводников привлекательно тем, что открывает возможность осуществления непосредственного преобразования энергии электрического тока в энергию когерентного излучения в широком диапазоне от ультрафиолетовых волн до миллиметровых. Для получения состояния с отрицательной температурой в полупроводнике могут быть использованы различные переходы электронов между валентной зоной и зоной проводимости, межДу зоной и примесными уровнями, между примесными уровнями. [c.523]

    Энергия, образующаяся в результате химических реакций, может выделяться в разных формах, но, конечно, в эквивалентных количествах. Так, например, фотохимические процессы при фотографии развиваются при поглощении квантов лучистой энергии галидами серебра и, наоборот, можно построить источник когерентного излучения — лазер, работающий на энергии химических реакций. [c.141]

    Б.г. образуют эксимеры под действием пучка электронов, УФ-излучения или электрич. разряда на их смеси с галогенами, О2, фторсодержащими соед. Молекулы эксимеров существуют только в электронно-возбужденном состоянии. Переход из возбужденного состояния в несвязанное сопровождается когерентным излучением в широкой области спектра (100-600 нм), что используется для генерации лазерного излучения. Лазерное действие получено для КгР  [c.297]


    Если квантовая система состоит из большого числа одинаковых подсистем, возможна синхронизация излучат. К. п. в разл. подсистемах, приводящая к возникновению когерентного излучения. Данное явление лежит в основе работы лазеров и др. квантовых генераторов излучения. [c.368]

    Переходы 3S - JP, 35 - 2P или 2S - 2P в Ne используются для генерации когерентного излучения на длинах волн 3,39, 0,63 или 1,15 мкм соответственно. [c.563]

    Основные р-цин, приводящие к формированию активной среды и генерации когерентного излучения, следующие. [c.568]

    Число фотонов, равное числу Авогадро, называется Эйнштейном , так же как число электронов, равное числу Авогадро, называется фараде-ем . Расчет энергии, переносимой одним Эйнштейном фотонов, рассмотрен в разд. 15.1. Совсем недавно были найдены исключения из этого закона одновременное поглощение двух квантов в системах, облученных интенсивным и когерентным излучением лазера  [c.547]

    Впоследствии конструкция спектрометра усовершенствовалась. Работу возглавил Н. М. Поздеев, в дальнейшем заведующий лабораторией микроволновой спектроскопии и когерентного излучения института физики молекул и кристаллов Уфимского научного центра РАН. Сотрудниками лаборатории на созданном ими спектрометре были изучены микроволновые спектры, а на основании их анализа получены точные данные по структуре и электрическим свойствам молекул селенофена, [c.9]

    Изготавливаемые в настоящее время перестраиваемые диодные лазеры (ПДЛ) на основании твердых растворов, содержащих свинец, обеспечивают когерентное излучение в спектральном диапазоне 3-46 мкм, в котором почти все молекулы имеют интенсивные колебательно-вращательные полосы поглощения [57]. Широко используются два режима работы лазера непрерывный и импульсный. В последнем случае осуществляется регистрация сразу протяженного участка спектра с корреляционной обработкой сигнала. [c.241]

    Химический лазер — это такой источник когерентного излучения, действие которого основано на непосредственном преобразовании химической энергии в энергию лазера. [c.100]

    При прохождении фотонов через среду возможны следующие процессы взаимодействия с веществом фотоэлектрический эффект, компто-новское (некогерентное) рассеяние, образование электронно-позитрон-ных пар, томпсон-рэлеевское (когереятное) рассеяние, флуоресценция, тормозное излучение, аннигиляционное излучение, когерентное излучение на молекулах, потенциальное (дельбруковское) рассеяние, томпсоновское рассеяние на ядрах, ядерное резонансное рассеяние, ядерный фотоэффект [33]. Наиболее важными для технологии являются первые три явления. [c.43]

    Электромагнитное излучение радиоволнового диапазона генерируется и излучается макроскопическими объектами, которыми являются, например, высокочастотные передатчики и антенны. Такое излучение обычно когерентно. Излучаемые двумя независимыми источниками радиоволны могут беспрепятственно интерферировать. Излучение в оптической (инфракрасной, видимой, ультрафиолетовой) и рентгеновской областях спектра вызывается изменением энергетического состояния микросистем в атомной области. Такое излучение состоит из очень большого набора волн, характеризующихся малыми разностями частот. Эти электромагнитные волны не имеют определенных соотношений фаз, и поэтому они не когерентны. Явление интерференции для них может наблюдаться только в случае деления излучения на несколько потоков и закономерным взаимным сдвигом фаз в них. Эта кажущаяся противоположность обеих рассматриваемых областей была преодолена после изобретения оптического квантового генератора — лазера [Басов, Прохоров (1954), Шавлов, Таунс (1958), Мейман (1960)]. Осуществляющееся в лазере генерирование микросистемой когерентного излучения оптического диапазона своеобразно иллюстрирует единство спектров электромагнитного излучения. [c.172]

    Рубиновый лазер. Источником когерентного излучения (рабочим телом) здесь является кристалл розового рубина (окись алюминия А1аОз — корунд), содержащего в качестве примеси замещения трехвалентные парамагнитные ионы хрома Сг + (0,050%). У трехвалентного иона хрома, энергетическая схема которого [c.522]

    Лазеры — источники электромагнитного когерентного излучения, т. е. излучения, имеющего строго определенную частоту и направление (угол рассеяния измеряется несколькими минутами). Такого рода узкие пучки харг ктеризуются высокой плотностью мощности, достигающей —10 Вт/см . [c.380]

    Экспериментальная установка для определения дисперсности частиц от 2 до 100 мкм методом светорассеяния на малых углах (рис. 106) включает источник света, оптическую систему, кювету и регистрирующую аппаратуру. Источником монохроматического света служит гелий-неоновый лазер ОКГ-12, который является генератором непрерывного когерентного излучения с длиной волны 6328 А и мощностью 10 мВт. Оптическая система установкй включает нейтральный светофильтр, конденсорную и коллима торную линзы, точечную, ирисовую и приемную диафрагмы Основные параметры оптической системы установки  [c.314]


    Задачи Д.э.а. бимолекулярных р-ций-выяснение того, какова роль энергии разл. степеней свободы молекул реагентов в преодолении потенц. барьера, разделяющего исходное и конечное состояния (см. Энергия активации), а также вычисление ф-ции распределения выделяющейся при р-ции энергии по степеням свободы частиц продуктов. Решение этих задач обеспечивает возможность стимулирования данной р-ции, напр, посредством предварит, возбуждения определенного рода колебаний в молекулах реагента ла-зерньпи излучением. Удается установить предпочтительную форму выделяющейся при р-ции энергии (постулат., колебат. или вращательную), что позволяет использовать тот или иной процесс для вторичного преобразования энергии (напр., для преобразования энергии хим. р-ции в энергию когерентного излучения лазера, см. Лазеры химические). Величины, к-рые характеризуют кинетику бимолекулярных процессов - неупругих столкновений или р-цнй обмена, замещения, отрыва и т. п.,-это детальные сечения р-ции или микроскопич. константы скорости (см. Бимолекулярные реакции). [c.67]

    ЛАЗЕРЫ ХИМИЧЕСКИЕ, устройства для прямого преобразования энергии хим. р-ции в энергию когерентного электромагн. излучения. Инверсия населенности уровней обусловлена неравновесным распределением энергии хим. р-ции по степеням свободы молекул продукта. Для создания Л. х. используют р-ции, скорость к-рых превышает скорость установления равновесного распределения выделяющейся энергии. Как правило, это р-ции с участием химически активных атомов или радикалов Среди них особое место занимают цепные и разветвленные цепные р-ции, в к-рых химически активные центры (атомы и своб. радикалы) воспроизводятся (в разветвленных р-циях-размножаются) в ходе р-ции. Для создания нек-рого начального числа активных центров (инициирования цепной р-ции) необходимо затратить энергию. Поэтому чем больше длина цепи р-ции, тем большее кол-во хим. энергии переработается в лазерное излучение и тем меньшую роль будут играть затраты энергии на создание активных центров. При этом решающее значение имеет т. наз. хемолазерная длина цепи, определяемая как отношение скорости продолжения цепи к скорости релаксации возбужденных молекул, используемых для генерации когерентного излучения (но не к скорости гибели активных центров). Чем больше хемолазерная длина цепи, тем выше эффективность лазера по отношению к затратам энергии на инициирование р-ции. [c.567]

    Р-ция между атомарными фтором и водородом приводит к образованию колебательно возбужденных молекул HF, к-рые генерируют изл>чение с длиной волны в диапазоне 2,7-3,2 мкм. Замена водорода дейтерием дает возможность получить когерентное излучение в диапазоне длин волн 3,8 4,2 мкм Высокая т-ра в камере сгорания ( 1800 К) позволяет создать высокоскоростной сверхзвуковой поток реагентов, что чвеличивает мощность лазера. Гелий выполняет роль гам-разбавителя, препятствующего катастрофич повышению т-ры в лазерной зоне, к-рое могло бы привести к срыв , генерации и тепловому запиранию сверхзвукового потока. [c.568]

    Поглощение и испускание излучения атомами при изменении энергетического состояния их электронов лежит в основе действия лазера (слово лазер составлено из первых букв английских слов, описьгаающих принцип действия этого устройства—усиление света при стимулированном испускании излучения). В обычных условиях атом, поглотивший энергию, быстро испускает фотон и возвращается в основное состояние. В лазере интенсивный источник внешней энергии, например электрический разряд в газовой трубке, поддерживает большое число атомов в одном из возбужденных состояний. В этих условиях один фотон, самопроизвольно испущенный каким-либо возбужденным атомом, заставляет другие возбужденные атомы испускать фотоны, которые в точности совпадают по фазе, т. е. когерентны, с исходным фотоном и имеют совершенно одинаковую с ним длину волны. Эти фотоны в свою очередь стимулируют испускание фотонов новыми атомами, и возникает каскадный процесс испускания фотонов. В результате образуется когерентный волновой фронт фотонов, имеющих одинаковую длину волны и одинаковую фазу. Лазеру придают цилиндрическую форму, а на его концах помещают два параллельных зеркала, образующих оптический резонатор. Одно из зеркал делают полупрозрачным, и оно пропускает часть когерентного излучения лазера. [c.69]

    Генерация света происходит в резонаторе, который обычно имеет форму цилиндра с зеркалами на его торцах. Тем или иным способом в рабочем теле создается инверсная заселенность молекул. Фотоны, испущенные в среде, проходя мимо возбужденных молекул, вызывают испускание новых фотонов и т. д. Те фотоны, которые случайно испущены вдоль оси резонатора, многократно отражаются от зеркал и порождакуг в среде лавину таких фотонов. Длина резонатора выбирается такой, чтобы по его длине укладывалось целое число волн, так что при многократном отражении фотонов в резонаторе возникают стоячие волны, интенсивность которых усиливается лавинообразно. В лазере генерируется когерентное излучение, [c.433]

    В настоящее время уровень развития теории химии твердых тел позволяет целенаправленно синтезировать новые материалы, а также прогнозировать их физико-химические свойства. Например, важнейшая часть рубинового лазера — кристалл рубина, который преобразует полихроматическое излучение в монохроматическое— когерентный луч. Химический состав и структура рубина соответствуют -корунду. Характерной окраске и специфическим свойствам такой кристалл обязан примесным ионам Сг + (примесь 0,05% СгзОз), которые замещают часть ионов АР+. Облучение инициирует колебание ионов Сг +, которые генерируют вторичное уже когерентное излучение. Остальная масса кристалла играет пассивную роль — является проводящей прозрачной средой. Поэтому при создании ла.черов материаловедческая задача выглядела так рабочий кристалл должен быть прозрачен для света и [c.49]

    Химические лазеры могут работать в импульсном или непрерывном режиме. В первом случае используют относительно химически стабильную смесь реагентов, в которой действием ультрафиолетового излучения или электронным ударом инициируют быструю цепную реакцию, сопровождающуюся испусканием мощного импульса излучения. Импульсные химические лазеры весьма эффективны. Для создания мощного импульса когерентного излучения лазер из смеси водорода и фтора потребляет в 10 раз меньше энергии, чем импульсные лазеры других типов. Действие химического лазера в непрерывном режиме основано на реакциях при смешении химически активных газовых потоков высокой скорости в этом случае происходит быстрая смена отработанных реагентов, и излучение генерируется непрерывно. Применение веществ, реагирующих друг с другом без инициирования (например, атомного фтора с молекулой водорода), позволило создать идеальные химические лазеры, работающие на химической энергии, Дополнительным преимуществом химических лазеров является возможность создания когерентного излучения с высокой мощностью. К этому следует добавить, что химическая энергия, используемая в лазерах, дешевле световой и электрической энергии, А это, в свою очередь, означает возможность создания экономичных и все болег мощных лазерных систем. [c.102]

    В ряде систем проекционной литографии принято Оопт = 0,7, что, с одной стороны, повышает крутизну пограничной кривой, дает при некоторых заданных пространственных частотах большие значения ОПФ (ЧКХ), а с другой стороны, еще не приводит к значительным осцилляциям интенсивности (что может, например, дать оконтуривание изображения — двойной край ), резонансным эффектам, характерным для когерентного освещения. Учет подобных эффектов, ограничивающих возможности фотолитографии, становится особенно важным при использовании лазеров в качестве источников излучения для формирования микроизображений [33]. При использовании лазеров в качестве мощных источников монохроматического излучения основной проблемой является именно уменьшение когерентности, существенно ухудшающей ( когерентный шум ) качество изображения и приводящей к резонансным эффектам в изображении, что особенно опасно при передаче сложной конфигурации. Снижение пространственной когерентности излучения может быть осуществлено различными способами—от временного усреднения путем вращения рассеивающих компонентов или сканирования по зрачку [33] объектива до создания специальных, например эксимерных, лазеров, дающих некогерентное излучение [21, 34]. [c.30]

    Естественно, что для создания химического лазера необходимо использовать сильно экзотермические реакции, сопровождающиеся большим выделением энергии. Но этого недостаточно. Химическая реакция, представляющая интерес для создания лазера, должна быть также достаточно быстрой и приводить к неравновесному распределению энергии. Известно, что высокая скорость особенно характерна для реакций с участием свободных атомов или радикалов, для образования которых химическую смесь следует подвергнуть ультрафиолетовому облучению, электронной бо бардировке или действию электрического тска. Однако если в результате облучения возникнет одна-едиистпенная молекула, то затраты на ее образование не окупятся энергией когерентного излучения и смысл лпмического лазера как квантового генератора пропадет. Например, при обработке молекул шестифтористого [c.100]


Смотреть страницы где упоминается термин Когерентное излучение: [c.95]    [c.376]    [c.136]    [c.85]    [c.562]    [c.562]    [c.562]    [c.563]    [c.567]    [c.568]    [c.623]    [c.100]    [c.101]    [c.174]    [c.327]    [c.308]    [c.49]   
Введение в теорию комбинационного рассеяния света (1975) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Когерентность



© 2025 chem21.info Реклама на сайте