Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсная спектрофотометрия

    При постоянной толщине поглощающего слоя градуировочный график, построенный в координатах А—с, представляет собой прямую, проходящую через нулевую точку. Так как подавляющее большинство свободных атомов находится в основном состоянии, то значения атомных коэффициентов абсорбции дл элементов очень высоки и достигают и-10 , что при.мерно на три порядка выше молярных коэффициентов поглощения светового излучения, полученных для растворов (8 = п-10 ). Это в известной степени обусловливает низкие абсолютные и относительные пределы обнаружения элементов атомно-абсорбционным методом первые составляют 10 —10 г, вторые —10-5—10-8%. Для атомизации вещества в атомно-абсорбционной спектрофотометрии используют пламена различных типов и электротермические атомизаторы. Последние основаны на получении поглощающего слоя свободных атомов элемента путем импульсного термического испарения вещества кювета Львова, графитовый трубчатый атомизатор, лазерный испаритель и др. Пламенная атомизация вещества получила большое распространение в аналитической практике, так как она обеспечивает достаточно низкие пределы обнаружения элементов (Ю — 10" %) и хорошую воспроизводимость результатов анализа (1—2%) при достаточно высокой скорости определений и небольшой трудоемкости. Для наиболее доступных низкотемпературных пламен число элементов, определяемых методом атомно-абсорбционной спектрофотометрии, значительно больше, чем [c.48]


    НИЯ и исчезновения промежуточных продуктов реакции, хотя может использоваться и для количественных кинетических измерений, если проводить микроденситометрию фотографической пластинки. Для кинетических экспериментов больше подходит модификация метода, известная под названием импульсной спектрофотометрии. В случае импульсной спектрофотомет-рии вместо второй слабой импульсной лампы используется комбинация из непрерывного источника света (например, лампы накаливания с йодным циклом) и монохроматора, установленного на длину волны поглощения образца. Интенсивность прошедшего света регистрируется как функция времени скоростным фотоумножителем, а выходной сигнал либо отображается на осциллографе, развертка которого запускается вызывающей фотолиз световой вспышкой, либо, что более обычно в современной практике, запоминается непосредственно электронным регистратором переходных процессов. На рис. 7.6 показана фотография кинетической кривой оптического поглощения в подобном эксперименте. [c.201]

    Атомно-абсорбционная спектрофотометрия — относительно новый метод химического анализа. Первые работы по его применению опубликованы в 1955 г. [856, 1633]. Вследствие высокой чувствительности и селективности, простоты выполнения и малой продолжительности анализа этот метод в настоящее время широко применяется для определения многих элементов, в том числе ЗЬ [265, 659, 709, 863, 1011, 1024, 1303, 1315, 1538, 1558, 1632]. Метод основан на способности свободных атомов каждого элемента поглощать излучение только определенной резонансной частоты. Вводя анализируемый раствор в пламя горелки или используя другой атомизатор, переводят большую часть элементов, находящихся в растворе в виде химических соединений, в свободные атомы. Условия атомизации подбирают так, чтобы определяемый элемент возможно большей частью переходил в свободные невозбужденные атомы. Кроме растворов, в последнее время в атомно-абсорбционной спектрофотометрии успешно применяется вариант с использованием твердых образцов. Благодаря импульсному характеру испарения и отсутствия разбавления анализируемого материала, чувствительность определения элементов в этом варианте существенно повышается. Поглощение резонансного излучения атомным [c.88]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой. пластинки 6. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке 11 и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличивает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]


    В экспериментах по наносекундному фотолизу обычно в качестве первичного источника света применяются импульсные лазеры, так как разрядные лампы с короткой длительностью импульса дают слишком слабое излучение. В импульсной спектроскопии источник зондирующего излучения также должен быть быстрым. В одной из методик в качестве зондирующего источника света применяется флуоресцирующее вещество, возбуждаемое вторым лазером, который запускается с подходящей временной задержкой. Флуоресценция может иметь достаточно широкий спектр с точки зрения спектроскопии (в отличие от излучения лазера), а ее временной профиль определяется временем жизни. Для наносекундной импульсной спектрофотометрии подходящим источником зондирующего света может быть обычный импульсный разряд с длительностью импульса в сотни микросекунд. При этом в течение пе- [c.202]

    В последние годы благодаря развитию методов выделения бактериальных реакционных центров и применению импульсных спектрофотометров с пикосекундными (10 2 с) лазерами удалось подробно изучить большинство реакций световой фазы бактериального фотосинтеза. Энергия света поглощается молекулами бактериохлорофилла и каротиноидов, а затем (путем миграции электронного возбуждения) передается реакционному центру, содержащему небольщое число (2 или 4) особым образом упакованных молекул бактериохлорофилла. Разделенные заряды переносятся через мембрану молекул этих бактериохлорофиллов, запуская электронный транспорт, обусловливающий образование АТР, КАОН или восстановленного ферредоксина. [c.108]

    Люминесцирующие производные антрахинона нашли применение в качестве преобразователей энергии для активных лазерных сред в перестраиваемых лазерах на красителях. Растворы таких соединений подвергают облучению светом с длиной волны, близкой максимуму длинноволнового поглощения, а излучают свет с длиной волны, соответствующей полосе люминесценции [57]. Применение различных типов световой накачки - непрерывными или импульсными лампами, импульсными лазерами, использование красителей, обладающих полосами поглощения и люминесценции в различных областях спектра, позволили создать лазеры с разнообразным режимом работы. Лазеры на красителях дают возможность получать перестраиваемое излучение в широком диапазоне длин волн - от УФ до ИК области спектра. На их основе создано уникальное контрольно-измерительное технологическое оборудование, например, флуориметры, атомно-флуоресцентные спектрофотометры, предназначенные для научных исследований и использования в электронной промышленности, цветной металлургии, биотехнологии, экологического контроля окружающей среды. Перестраиваемые лазеры на красителях используют в медицине для диагностики и фотодинамической терапии рака [57]. У этой бурно развивающейся отрасли приборостроения большое будущее. [c.35]

    АТОМНО-ФЛУОРЕСЦЕНТНЫИ АНАЛИЗ (атомно-флуоресцентная спектрометрия), метод количеств, элементного анализа по атомным спектрам флуоресценции (см. Люминесценция). Для получения спектров атомный пар пробы облучают излучением, частота к-рого совпадает с частотой флуоресценция определяемых атомов (резонансная флуоресценция). Р-ры исследуемых в-в атомизируют чаще всего в пламенах, реже — в электротермич. атомизаторах, нагреваемых током графитовых тиглях и печах порошки — в тиглях и капсулах, помещенных в пламя. Хим. состав пламен и защитную атмосферу тиглей подбирают так, чтобы тушение флуоресценции было минимальным. Источниками возбуждения служат интенсивные импульсные лампы с полым катодом, лазеры и др. Спектр флуоресценции регистрируют с помощью простых светосильных спектрофотометров. Интенсивность линий флуоресценции — мера конц. элементов в пробе. Для градуировки прибора примен. стандартные образцы известного хим. состава, соответствующего составу пробы. Осн. достоинства метода большая селективность, низкие пределы обнаружения (в р-рах — 10- нг/мл, в порошюх — до 10- —10- % для таких летучих элементов, как d и Ag), большой интервал конц., в к-ром градуировочный график прямолинеен (обычно 1—2 порядка величины концентрации, а с применением лазеров — до 5), простота автоматизации. А.-ф. а, использ. для определения приблизительно 50 элементов в сплавах, горных породах, лунном грунте, растениях, почвах, водах, нефтях, пищ. продуктах и т. д. [c.59]

    Времена жизни люминесценции можно изучать аналогично тому, как это делается в абсорбционной импульсной спектрофотометрии, за исключением ненужного зондирующего источника света. Очевидным дальнейшим вариантом является использование резонансной флуоресценции для определения концентраций промежуточных продуктов, возникающих под действием фотолитической вспышки. [c.201]

    Импульсный фотолиз, в реакционной смеси мощной вспышкой света генерируют атомы, радикалы илн возбужденные (в триплет-ном состоянии) молекулы, за превращением которых следят методами скоростной спектрофотометрии. Вспышку генерирует газоразрядная лампа, на которую разряжают конденсаторы емкостью 4—10 мкФ, заряженные до 4—20 кВ (рис. 25). Вспышка длится несколько микросекунд. Кварцевый реакционный сосуд обычно имеет длину 10—20 см и диаметр 2—4 см. Метод применим как к газам, так и к жидкостям он позволяет наблюдать реакции с временем полупревращения до 10 с. Мощная вспышка позво- [c.292]


    Импульсный фотолиз, в реакционной смеси мошной вспышкой света генерируют атомы, радикалы или возбужденные (в триплетном состоянии) молекулы, за превращением которых следят методами скоростной спектрофотометрии. Вспышку генерирует газоразрядная лампа (рис. 27), на которую разряжают конденсаторы емкостью 4—.10 мкФ, заряженные до 4 — 20 кВ. [c.345]

    Этот метод является радиационно-химическим аналогом импульсного фотолиза. Для идентификации детектирования частиц используют скоростную спектрофотометрию. Кинетическую информацию обрабатывают с помощью ЭВМ. Активные частицы генерируют путем электронного удара коротким импульсом высокоэнергетических электронов, которые вызывают ионизацию и электронное возбуждение молекул, а возбужденные молекулы диссоциируют с образованием радикалов и атомов. [c.204]

    Рассмотрены условия определения натрия с пределом обнаружения 10 % методами атомно-абсорбционного и атомно-флуоресцент-ного анализа в оксидах редкоземельных элементов (иттрия, лантана, неодима, празеодима и тербия) [119]. Применялся метод импульсного электротермического испарения вещества из графитового тигля при пропускании тока 200—400 А. Спектрофотометр сконструирован на базе монохроматора МДР-2, детектор — фотоумножитель ФЭУ-18. Помехи уменьшаются при применении модулированного первичного излучения на частоте 756 Гц. Эталонирование осуществляли на основе графитового порошка. [c.134]

    В пособии в строгой, сжатой и доступной форме изложены 14 методов, применяемых при исследовании кинетики и механизма химических реакций. Это видимая и ультрафиолетовая спектрофотометрия, круговой дихроизм и спектрофотометрия, инфракрасная спектрометрия, люминесценция, хемилюминесценция, импульсный фотолиз, электронный парамагнитный резонанс, ядерный магнитный резонанс, газожидкостная хроматография, калориметрия, рН-метрия, аналоговые и цифровые вычислительные машины. Книга написана по единому плану. [c.231]

    Изучены аналитические характеристики двух отечественных атомно-абсорбционных спектрофотометров [ИЗ] Сатурн-1 с атомизатором, в котором используется импульсное испарение пробы с подставного электрода в накаленную до высокой температуры графитовую трубчатую кювету, и прибор С-303 с графитовой трубчатой печью, в которую вводится испаряемая проба. [c.95]

    Повышение чувствительности микроопределений и уменьшение навески пробы в атомной эмиссионной и абсорбционной пламенной спектрофотометрии достигают методом непосредственного импульсного испарения материала в пламя с микрозонда [364, 517]. При использовании окислительного пламени закись азота—ацетилен определяют 10" % Сг в навесках 1 — 10 мг. [c.122]

    В спектрофотометрах в основном применяется один тип усили-тельно-регистрирующих систем узкополосные системы с прерыванием светового пучка (модуляцией). В таких системах используется узкополосный (резонансный) усилитель переменного тока, ширина полосы пропускания которого может регулироваться около несущей частоты соо, которой является частота прерывания пучка. В скоростных спектрометрах иногда применяются импульсные системы с широкополосным усилителем. Для регистрации медленных изменений фототока низкочастотная граница широкополосного усилителя располагается в области самых низких частот. Высокочастотная граница характеристики определяет возможность регистрации быстрых изменений фототека. Между постоянной времени усилителя и его шириной полосы пропускания A j e имеется следующая зависимость  [c.227]

    В заключение хотелось бы подчеркнуть, что неправильно считать газохроматографические методы универсальными, способными полностью заменить другие методы изучения каталитического процесса и адсорбции. Большая сложность и необычайное многообразие задач, типичных для катализа, приводят к тому, что не все они могут быть решены силами одной только газовой хроматографии. Назрела неотложная необходимость создания комплексных приборов, в которых бы хроматографические методы сочетались с другими физико-химическими методами изучения активного твердого тела или отдельных компонентов реагирующей смеси. Сочетание импульсной хроматографии с ЭПР, ЯМР, спектрофотометрией или масс-спектрометрией позволит существенно улучшить наши знания в области катализа. [c.7]

    Источниками возбуждения служат интенсивные импульсные лампы с полым катодом (см. раздел 2.3) или лазеры. Спектр флуоресценции регистрируют с помощью простых светосильных спектрофотометров (см. также раздел 2.3). Отечественной промышленностью выпускается лабораторный флуориметр Квант , в основу работы которого заложен принцип фотомет-рирования — сравнения световых потоков двух каналов, содержащих кювету с исследуемым флуоресцирующим веществом в одном канале и рассеивающую свет пластинку в другом. Спектральный диапазон флуоресценции — 300—600 нм [1]. [c.248]

    Метод трассирующего газа. Газ-трассер—гелий. Ввод трассера импульсный по всему сечению слоя. Газоанализатор-спектрофотометр [c.98]

    Обзор состоит из следующих разделов атомно-абсорбционная аппаратура, методы атомно-абсорбционного анализа, применение в атомно-абсорбционном анализе импульсных ламп, методы изотопного анализа, атомно-абсорбционная спектрофотометрия редкоземельных элементов и основные принципы атомно-флуоресцентного анализа. [c.219]

    В локализованном состоянии избыточный электрон обладает характерным спектром поглощения. Вид спектра поглощения в основном определяется растворителем (средой) и, в меньшей степени, температурой и состоянием среды (жидкость или стекло). Спектры поглощения электрона обнаружены как в полярных, так и в неполярных жидкостях [114] методами импульсного радиолиза или фотолиза. В стеклах при низких температурах спектры локализованных электронов легко могут быть исследованы обычным методом низкотемпературной спектрофотометрии после облучения стекла. [c.33]

    Изучение компонентов фотосинтетической цепи транспорта электронов так же, как и первичных продуктов фотохимической реакции, проводится с помощью обладающих высокой чувствительностью спектральных методов (абсорбционная дифференциальная спектрофотометрия, импульсная спектрофотометрия). Многие уча-ствуицие в процессе фотосинтеза переносчики электронов при окислении или восстановлении меняют спектр поглощения. Вышеуказанные методы позволяют определять вызванные светом небольшие обратимые изменения в поглощении света организмами in vivo которым можно судить о наличии, состоянии и характере индуцированных светом окислительно-восстановительных превращений данного соединения. Некоторые интермедиаты определяют по изменениям в спектре флуоресценции. [c.172]

    В настоящее время через быстродействующий АЦП к ЭВМ присоединяют один быстро сканирующий масс-спектрометр и один импульсный прибор ЯМР, в то время как через медленно действующий АЦП одновременно подключают несколько приборов 23 газожидкостных хроматографа, один прибор ЯМР, один спектрополяриметр, один медленно сканирующий масс-спектрометр для количественного анализа, а иногда ИК-спектрофотометр и спектрометр ЭПР. [c.78]

    ИК и ЯКР спектры. ИК-спектры сняты на спектрофотометре U-20, спектры ЯКР С1 измерены на импульсном спектрометре при 77 К (погрешность измерения резонансной частоты и времени спин-решеточной релаксации 0,01 и 10% соответственно) [8]. [c.68]

    На рис. 16.16 показана схема аппаратуры для импульсного фотолиза вместе с измеряющим спектрофотометром. Новые частицы, образующиеся в реакционном сосуде под действием импульса света, можно изучить, регистрируя их спектры поглощения с помощью фотографической пластинки или в виде сигнала на экране осциллографа. Свет, необходимый для анализа системы после облучения, фотолизирующим импульсом света, получают с помощью дополнительной спектроскопической анализирующей импульсной лампы. Фотолитическая и аналитическая импульсные лампы связаны таким образом, что можно контролировать интервал времени между возбуждением от фотолитического импульса и появлением анализирующегося светового пучка. [c.281]

    Недавно было предложено несколько прямых методов определения фг в жидких растворах при комнатной температуре. По методу Боуэрса и Портера [216] фг рассчитывают из абсолютных концентраций триплетных молекул, полученных импульсной спектрофотометрией по поглощению. Ламола и Хаммонд [105] использовали исследуемое вещество в качестве фотосенсибилизатора тех реакций, которые протекают через триплетное состояние реагентов. Мы не будем рассматривать эти методы, поскольку в них не измеряется фотолюминесценция, но в следующих разделах остановимся на двух других методах, основанных на фотолюминесценции. В одном из этих методов данные по тущению флуоресценции сопоставляют с относительными концентрациями триплетных молекул, полученных при импульсном фотолизе, в другом — измеряют только быструю и замедленную флуоресценцию, используя, однако, в качестве стандарта вещество с известной эффективностью образования триплетов. [c.288]

    Итак, фотохимическая дезактивация возбужденной молекулы ретиналя, заключающаяся в ее цис-транс-изо-меризации, переходе Н-цис-- полностью гранс-изомеры, осуществляется, по-видимому, через триплетное состояние. Между первичной фотохимической реакцией и гидролизом родопсина с образованием свободного ретиналя протекает ряд промежуточных темновых реакций. Эти реакции детально изучены в экспериментах с использованием импульсной спектрофотометрии и стабилизации промежуточных продуктов в определенных температурных интервалах (рис. 26). Тем не менее вопрос о количестве и последовательности образования промежуточных продуктов еще далек от окончательного разрешения. Ниже приводится одна из наиболее общепринятых схем превращения родопсина — модифицированная схема Уолда  [c.132]

    Импульсный раднолиз. Высокая концентрация активных частиц создается мощным импульсом рентгеновских лучей или электронов. Импульс должен иметь энергию не менее 100 Дж и длиться не более 50 мкс. Обычно используется линейный ускоритель электронов, за кинетикой расходования следят методом скоростной спектрофотометрии. Метод используют для изучения реакции свободных радикалов, сольватированного электрона. [c.345]

    НЫЙ разряд, обеспечивать равномерный нагрев жидкости, а также позволять использование оптической аппаратуры для спектрального контроля. Обычно реакционная ячейка изготавливается из плексигласа, электроды - из латуни, свет пропускается через кварцевые стержни. Равномерный нагрев обеспечивается параллельными электродами, охватывающими реакционную ячейку. Быстрый нагрев достигается с помощью импульсного генератора микроволн. За счет электрической релаксации жидкость поглощает микроволны определенной частоты и быстро нагревается. Вода поглощает микроволновое излучение на частоте 10 спри этом удается повысить температуру на 1 К за 1 мкс. Наиболее распространенным методом регистрации является абсорбционная спектрофотометрия. [c.323]

    Современная теория одностадийных реакций — важная часть химической физики. Ее успехи связаны с развитием вычислительной техники, новых физических методов исследования метода скрещенных пучков, ЭПР, лазерного магнитного резонанса (ЛМР), индуцированной лазерной флуоресценции, импульсной техники и скоростной спектрофотометрии в нано-, ПИКО-, фемтосекундных диапазонах. [c.98]

    Кинетика расходования исходного вещества рН-статический метод Спектрофотометр ия Ториметрическое титрование Хемилюминесцентный метод Импульсный радиолиз под воздействием рентгеновских лучей Метод фотолиза [c.348]

    В однолучевом спектрофотометре свет от источника резонансного излучения, питаемого импульсным током, пропускают через пламя, в которое впрыскивается межодисперсный аэрозоль раствора пробы. В пламени частички аэрозоля испаряются и диссоциируют, образуя свободные атомы, способные поглощать свет на резонансных длинах волн. В результате атомного поглощения начальная интенсивность светового пучка /о снижается до некоторой величины I, зависящей от концентрации данного элемента в пробе. Монохроматор выделяет узкую область спектра (доли нанометра), в которую попадает нужная аналитическая линия. Приемник света (обычно — фотоэлектронный умножитель) превращает световой поток в электрический сигнал, который после [c.828]

    Время жизни фосфоресценции может быть измерено либо при наблюдении зависимости интенсивности от времени [35, 154, либо прослеживанием исчезновения спектра триплет-триплетного поглощения [67]. В первом методе используются фотоумножитель и осциллограф, или быстродействующий гальванометр, или даже записывающее устройство с регистрацией на бумаге, если затухание проходит очень медленно. В случае более короткого времени жизни до области миллисекунд применяют фосфороскоп. Время жизни может быть вычислено при наблюдении изменения интенсивности в зависимости от скорости вращения, если известны угловое расстояние между прорезями и размеры прибора. С помощью фосфороскопа с цилиндром, приводимым в движение сжатым воздухом и вращающимся со скоростью 12 ООО об1мин, было измерено очень малое время жизни, составляющее 5-10 сек [73]. Мак-Клюр [136] использовал механический фосфороскоп для измерения времени жизни триплетного состояния ряда ароматических углеводородов и их производных в твердых растворителях. Регистрирующий спектрофотометр Кэри использован Крейгом и Россом [67] для изучения ослабления триплет-триплетного поглощения у ряда ароматических углеводородов в твердых стеклах при температуре жидкого азота. Измеренное таким образом время жизни хорошо согласуется со значением, полученным при измерениях фосфоресценции. Если использовать импульсные лампы, то данный метод можно применить для измерения времени жизни триплетного состояния в жидких растворах, где вследствие быстрого тушения из-за соударений фосфоресценция наблюдается редко [167]. Время жизни триплетного состояния определено также по скорости исчезновения спектра ЭПР [106, 197]. [c.90]

    Практически для всех спектроскопических применений необходимы перестраиваемые лазеры. Основные требования к ним — широкая область перестройки, узкая по.тоса генерации, высокая стабильность частоты и энергип излучения, воспроизводимость этих параметров. Наибольшие успехи в видимой и УФ-областях достигнуты сейчас за счет лазеров на красителях, а в ИК-области — с полупроводниковыми лазералп и лазерами на молекулярных газах. Уже освоены ширины лггапй генерации от 1 кГц до 1 МГц в непрерывном и 10—30 МГц в импульсном режимах, перекрывающие обычные потребности спектроскопии. Полученные спектральные плотности излучения мощности диодных ИК-лазеров 10 Вт/Гц значительно превосходят тепловые излучатели. Мощности непрерывных лазеров на красителях достигают 1 мВт п более. Основные проблемы состоят в повышении стабильности генерации, воспроизводимости и развитии методов непре-рывпой перестройки в широком диапазоне. Это, конечно, приведет к усложнению лазеров и увеличению их стоимости. Сейчас стоимость перестраиваемого лазера сравнима со стоимостью хорошего спектрофотометра, следовательно, трудно ожидать дешевых. лазерных приборов. Более вероятно их применение для специальных задач, особенно когда финансовые проблемы отходят на второй план. Еще раз подчеркнем важность производства лазерного набора , который фактически является спектральным прибором для исследовательских лабораторий. [c.12]

    Метод трассирующего газа. Газ-трассер—гелий. Ввод трассера импульсный. азоанализатор— спектрофотометр. Двухфазная модель с продольным перемешиванием газа [c.108]

    Современная полярография представляет собой чувствительный и экспрессный метод, пригодный для анализа неорганических, органических, геохимических, биохимических, медицинских, фармацевтических и многих других объектов. Вероятно,, это один из наиболее универсальных методов анализа следов. В определении ряда элементов импульсная, фазочуветвительная переменнотоковая полярография и полярография с линейной разверткой потенциала могут успешно конкурировать с атомноабсорбционной спектрофотометрией. Для многих электрохимически активных примесей возможно определение на уровне 10 % и ниже. В определении следовых количеств органических соединений полярография не имеет реальной конкуренции. Современный полярограф может дать линейную зависимость тока от концентрации в интервале 10 —10 М, т. е. в интервале шести порядков величины. В большинстве спектрофотометрических приборов и методик интервал поглощения находится в области 10 —10 . Однако несмотря на все эти качества,, все еще есть существенные препятствия широкому использованию этого метода [5]. Из всех проблем, связанных с признанием полярографии, наиболее серьезной теперь является образование. Дело не только в том, что этот предмет до недавнего времени в большинстве курсов химии преподавался неудовлетворительно, но и в том, что лишь немногие опытные химики-аналитики имеют знания в области практического полярх)гра-фического анализа, выходящие за рамки обычного постояннотокового варианта, и они в какой-то мере предубеждены против полярографического метода и тем самым затрудняют его распространение. [c.14]

    В последних моделях спектрофотометров как иностранного, так и отечественного производства для получения необходимой информации стали широко применять системы регистрации с использованием микро-ЭВМ. Эти системы позволили решить проблему автоматической выдачи результатов анализа непосредственно в единицах концентрации на цифропечатающем устройстве, а также при необходимости производить анализ по пиковььм или же интегральным значениям импульсных сигналов в случае применения ЭТА и т. п, [c.139]

    Хотя методом импульсного радиолиза в сочетании со спектрофотометр ической регистрацией был внесен значительный вклад в исследование переноса электрона с участием цитохрома детали динамики конформационных изменений белка, сопровождающих изменения в степени окисления центрального атома железа необходимо выяснять с помощью независимых методик, например таких, как резонансное комби национ ное рассеяние. [c.282]


Смотреть страницы где упоминается термин Импульсная спектрофотометрия: [c.263]    [c.636]    [c.159]    [c.109]    [c.4]    [c.332]   
Основы и применения фотохимии (1991) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия

спектрофотометрия в сочетании импульсная для непрерывной идентификации компонентов



© 2024 chem21.info Реклама на сайте