Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность при барботаже

    С учетом уравнений равновесия и рабочей линии по этому компоненту уравнение (17.63) позволяет определить функциональную зависимость х от у при известных значениях С, 8 я Kys. При этом, определив расход пара С по исходным данным и выбрав конструкцию тарелки, поверхность барботажа тарелки определяют по стандартной схеме, изложенной выше (см. разд. 15.7.2) О- [ 0 8. [c.140]

    Условная поверхность барботажа Р, т. е. площадь поперечного сечения колонны за вычетом площади, занятой сливными устройствами и колпачками, равна 0,433 м ). [c.129]


    Концентрационные колонны изготовляются самых разнообразных типов и размеров. Иногда вместо одного барботаж-иого колпака, как описано выше, ставят 7 колпаков или один колпак звездообразной формы, увеличивая таким образом поверхность барботажа и уменьшая сопротивление аппарата. Колонны барботажного типа снаружи покрывают теплоизоляцией. [c.282]

    Коэффициент Ч представляет собой отнощение поверхности барботажа ко всей площади тарелки. Для этой величины можно принимать следующие значения (меньшие значения относятся к скорости газа w — 0,5 Штат, большие к ш = гИтах)  [c.486]

    Опытным путем в межтарелочных отделениях колонны было установлено наличие четырех областей, различающихся по относительному содержанию жидкой и паровой фаз. Самая нижняя из них простирается от уровня поверхности тарелки до нижнего обреза прорезей колпачков и содержит лишь сравнительно чистую жидкую фазу, не взболтанную и не перемешанную струйками или пузырьками пара. Следующая область занимает пространство от нижнего обреза прорезей колпачков до линии, несколько превосходящей уровень флегмы на тарелке в отсутствие барботажа паров. Эта область содержит взболтанную барботирующим паром вспененную жидкую фазу. [c.129]

    Режим захлебывания (барботажа) соответствует максимальной эффективности колонны, так как поверхность соприкосновения фаз наибольшая. [c.67]

    При барботаже часть газа (пара) вследствие трения распыляется в жидкости, образуя пену, а часть жидкости увлекается газом в виде брызг. При этом пространство над слоем жидкости на тарелке заполняется пеной и брызгами, которые и создают развитую поверхность соприкосновения фаз. [c.68]

    На практике раздельное определение Л/, и а при физической абсорбции обычно невозможно. Так, в насадочных колоннах не известна доля эффективно смоченной поверхности насадки, а при барботаже не известна величина поверхности, разделяющей жидкость и пузыри газа. Поэтому в опытах по физической абсорбции чаще всего измеряют произведение кф. [c.99]

Рис. 1Х-8. Межфазная поверхность в абсорберах с механическим перемешиванием и барботажем газа (диаметр сосуда 19,1 см) Рис. 1Х-8. <a href="/info/4410">Межфазная поверхность</a> в абсорберах с <a href="/info/94538">механическим перемешиванием</a> и <a href="/info/24683">барботажем газа</a> (диаметр сосуда 19,1 см)
    Межфазная поверхность при барботаже представляет собой суммарную поверхность всех пузырьков на высоте жидкостного столба и определяется следующими соотношениями для свободного барботажа [c.17]


    В настоящее время нет достаточно надежных данных для определения поверхности контакта фаз, а особенно — эффективной поверхности массопередачи при барботаже на тарелках. Поэтому обычно в расчетах тарельчатых колонн используют коэффициенты массопередачи, отнесенные к единице рабочей площади тарелки (Ку/). [c.132]

    Изучали расширение слоя и определяли скорость в момент возникновения пузырей при псевдоожижении различных твердых частиц воздухом под давлением 1 -10 — 1,4-10 Па (от 1 до 14 ат) в трубе диаметром 101,6 мм, снабженной пористым бронзовым газораспределительным устройством (средний размер пор 2 мкм, максимальный — 10 мк>1). Особое внимание было уделено определению скорости воздуха в момент возникновения пузырей, для чего скорость воздуха увеличивали очень плавно до появления первого пузыря. Как только он достигал свободной поверхности слоя, наблюдалось резкое уменьшение высоты последнего и устанавливался непрерывный барботаж пузырей. [c.54]

    Большинство промышленных процессов в псевдоожиженных системах реализуется в металлических аппаратах, поэтому они недоступны для визуальных наблюдений. Однако наличие газовых пузырей часто можно обнаружить по флуктуациям давления газа или по вибрации аппарата (особенно в случае псевдоожиженного слоя больших размеров.). Эти флуктуации примерно соответствуют прорыву свободной поверхности слоя крупными пузырями, и по ним можно приближенно судить о частоте барботажа пузырей. Для многих промышленных установок такая информация является единственно возможной. [c.123]

    Обозначим константу скорости реакции первого порядка в слое твердых частиц порозностью через к. Будем рассматривать гетерогенные реакции в системе газ — твердые частицы их общая скорость лимитируется либо диффузией, либо кинетикой реакции адсорбции или десорбции. В первом случае процесс может лимитироваться внутренней диффузией (в порах частицы) либо внеш-йей (к наружной поверхности частицы). Общая скорость реакционного процесса максимальна в случаях, когда лимитирующей стадией является внешняя диффузия. Кроме того, диффузия может контролировать процесс в слое с барботажем пузырей, когда наиболее медленной стадией является приток свежего реагента от пузырей к непрерывной фазе. [c.311]

    Несколько опытов было проведено со слоями, содержащими 2,4 36 и 70 кг песка. В этом диапазоне навесок материала (т. е. высот слоя) частота появления пузырей на поверхности слоя оставалась практически неизменной. Отсюда можно заключить, что изменение частоты барботажа пузырей происходит на относительно коротком расстоянии от отверстия. Эти результаты соответствуют приведенным ранее данным а также полученным при изучении барботажа пузырей, образующихся в случае ввода газа через одиночное отверстие в слой, псевдоожиженный газом . Влияние расширения слоя на коалесценцию пузырей четко иллюстрируется данными фотосъемки двухмерных слоев 1 . [c.661]

    Живое сечение тарелок из 5-образных элементов (по нормали ОСТ 26-536—78) составляет 9—11%, зеркало барботажа 30—60%. Однопоточные тарелки рекомендованы для колонн диаметром 1—4 м, а для колонн более 4 м применяют двух-и четырехпоточные тарелки. 5-образные элементы расположены от одной до другой стенки аппарата, что уменьшает неиспользуемую поверхность тарелки по сравнению с колпачковыми тарелками (у последних возле стенки аппарата остается неиспользованная площадь, на которой невозможно установить колпачок). Диаметр колонны с тарелками из 5-образных элементов не ограничивается. [c.78]

    При увеличении высоты сливной перегородки увеличивается площадь фронтального перемещения жидкости и уменьшается гидравлическое сопротивление движению жидкости по тарелке, что также уменьшает градиент. Однако при чрезмерном увеличении уровня жидкости на тарелке возрастают унос капель, л жидкость частично проваливается через паровые патрубки. Применяют также следующие методы улучшения барботажа на поверхности тарелки, не связанные с уменьшением градиента жидкости на тарелке  [c.89]

    При конструировании крупномасштабных массообменных аппаратов, снабженных барботажными тарелками с переливом, используется несколько приемов, направленных на повышение эффективности массообмена в пределах площади тарелки. В частности, одним из направлений является интенсификация локального процесса массообмена между газом и жидкостью в точке, что достигается увеличением газосодержания пены или, что то же самое, поверхности контакта фаз. Второе направление используется в основном для повышения эффективности тарелок диаметром свыше 1200 мм и предусматривает продольное и поперечное секционирование площади барботажа на ряд участков меньшего размера. При этом предполагается, что потоки на этих участках распределены равномерно и тем самым обеспечиваются условия высокоэффективной работы тарелок в целом. [c.102]

    Показатель выделения тепла при погружении образца угля в метанол (несколько калорий на 1 г угля) позволяет сделать заключение о большой удельной поверхности микропор, составляющей около нескольких сотен квадратных метров на 1 грамм угля. Однако, когда измеряли эту поверхность методами адсорбции газа при низкой температуре, дававшими хорошие результаты при изучении других мелкопористых твердых тел, например при барботаже азота или ожижен-ного кислорода при температуре около —190° С, то получили очень малые величины, не превышающие нескольких квадратных метров на 1 г угля. [c.26]


    Так как для реакторов с барботажем (реже для колонны с тарелками) межфазная поверхность газ — жидкость не может быть определена точно, то прп расчетах пользуются коэффициентом массопередачи, отнесенным к единице рабочего объема. [c.167]

    Поверхность контакта фаз при барботаже можно считать равной поверхности пузырьков. Число пузырьков в слое жидкости высотой 1 м будет равно [c.167]

    Из уравнения (IV,64) следует, ято поверхность контакта фаз можно считать прямо пропорциональной скорости барботажа и высоте слоя жидкости. [c.168]

    В некоторых случаях используют пористую поверхность, которая дает возможность получать пузырьки очень малого диаметра (одновременно с барботажем осуществляется и некоторая гомогенизация, хотя перемешивание иногда становится ненужным). При таком способе устраняется ряд недостатков, возникающих при использовании мешалок (особенно, когда процесс протекает при высоком давлении). [c.171]

    Реакторы с барботажем имеют очень большую поверхность контакта между газом и жидкостью. В некоторых реакторах жидкость приводится в состояние [c.171]

    В результате подъема пузырьков на поверхность жидкости образуется слой так называемой минерализованной пены, наполненной частицами гидрофобного минерала. Частицы же других, более смачиваемых минералов остаются в объеме пульпы во взвешенном состоянии и постепенно опускаются вниз. Однако динамическая пена, создаваемая только за счет гидродинамических условий (барботаж), легко разрушается, пузырьки ее быстро сливаются. Кроме того, природные минералы редко обладают флотируемо-стью, т. е., как правило, мало отличаются по смачиваемости. Поэтому для создания благоприятных условий флотации в пульпу вводят различные флотационные реагенты. Для увеличения стойкости воздушных пузырьков и образования из них стабильной пены на поверхности пульпы в нее вносят пенообразователи, т. е. поверхностно-активные вещества, образующие адсорбционные пленки на поверхности пузырьков. В качестве пенообразователей применяют сосновое масло, некоторые фракции каменноугольной смолы, древесный деготь и т. п. [c.14]

    Интенсивное перемешивание верхних слоев маточного раствора в ванне сатуратора достигается особой конструкцией барбо тажного устройства (рис. 31). К нижней поверхности барботаж-ного зонта по всей его окружности прикрепляется 50 направляющих лопаток, расположенных под некоторым постоянным углом к поверхности зонта. Вследствие такого расположения направляющих лопаток коксовый газ, кроме перемешивания раствора при барботаже вверх, приводит его также во вращат ельное движение. В результате такого вращения раствора содержащиеся в нем кристаллы длительное время поддерживаются во взвешенном состоянии. [c.140]

    В рассматриваемом лроцессе используют суспендирсванный в масле порошкообразный железный катализатор. Суспензия поддерживается в постоянном движении вследствие барботажа синтез-газа. В реакторе размещается теплоотдающая поверхность, интенсивность теплоотдачи в условиях процесса значительно превышает достижимую в старом процессе Рурхеми, местные перегревы, ведущие к метанообразованию и отложению углерода, практически исключаются. Допустимая объемная скорость в 4—8 раз превышает объемную скорость на стационарном катализаторе. Разгрузка катализатора и пуск системы на свежем катализаторе производятся очень легко. Катализатор не регенерируют. [c.118]

    Газ (пар) проходит по патрубкам, 7 в пространство под колпачками и, выходя далее из-под колпачка, барботирует через слой жидкости. Пары от поверхности жидкости отрываются вертикально при большой локальной скорости, что способствует забрасыванию капель жидкости иа вышележащую тарелку. Площадь барботажа для колпачковых тарелок в 2—3 раза меньше по сравнению с тарелками новых типов, и, как следст- [c.60]

    Приведенные выше формулы применимы для пузырьков диаметром не более 1 мм. Крупные пузыри при подъеме деформируются, приобретая эллипсоидную форму (при с1и = 1—5 мм) и полусферическую (при п > 5 мм), причем движение пузырей становится спиральным [71. Закономерности, установленные для пузырей, выходящих из одного отверстия, справедливы при массовом барботаже, если скорости газового потока невысоки (0,1—0,3 м/с на свободное сечение аппарата). При более высоких скоростях пузыри сливаются в сплошную струю, которая разрушается на некотором расстоянии от отверстия с образованием пены. Размеры пузырей в пене различны. Для усреднения используют средний ловерхностно-объемный диаметр ср = 6е/а (где е — газосодержание пены, а — удельная поверхность). [c.17]

    В псевдоожиженном слое существуют благоприятные условия для тепло-и массообмена между твердыми частицами и ожижающим агентом происходит быстрое перемешивание твердых частиц. При атом коэффициенты теплообмена с наружной поверхностью аппарата весьма высоки, поэтому аппараты с псевдоожиженным слоем используют как теплообменники и хими-ческие реакторы, особенно в тех случаях, когда требуется тонкое регулирование температуры и когда системе нужно сообщать (или отеодить ив нее) большие количества тепла. В связи с атим необходимо выяснить характер движения ожижающего агента и твердых частиц. По внешнему виду поток ожижающего агента в псевдоожиженном слое кажется турбулентным. Однако при скоростях, близких к скорости начала псевдоожижения, и в непрерывной фазе неоднородного слоя с барботажем пузырей движение потока обычно является ламинарным этот режим нарушается только в сильно расширенном Однородном слое и при использовании крупных твердых частиц. [c.38]

    Если свободная поверхнвсть слоя доступна для наблюдения, то можно получить дополнительную информацию. При не очень интенсивном барботаже газовых пузырей легко "наблюдать выход отдельных пузырей на поверхность слоя, а также измерить их частоту и размеры. Обычно для таких измерений необходима фото- или киносъемка, так как процесс протекает быстро и зафиксировать его с достаточной точностью визуально весьма трудно. При значительных скоростях газа невозможно различить выход отдельных пузырей и получить сколько-нибудь значительную количественную информацию. Качество визуальных наблюдений зависит от природы материала. На фото IV- особенно, четко видны полусферические вздутия на поверхности слоя порошкообразного катализатора в момент, предшествующий выходу пузыря из слоя Для образования пузырей можно ввести в минимально псевдоожиженный слой (или в слой со слабым барботажем пузырей) дополнительное количество газа через отдельное отверстие в основании слоя или внутри него. Фиксируя промежуток времени от ввода газа до выхода пузыря из слоя, легко определить среднюю скорость движения пузыря - . [c.123]

    На рис. V-16 данные ряда работ сопоставлены с уравнением (V,30) наличие или отсутствие поршней показано точками, расположенными, соответственно, выше или ниже пунктирной прямой. Состояние слоя оценивалось авторами субъективно, и за начало возникновения поршней принимался момент, когда перемещения свободной поверхности псевдоожиженного слоя становились достаточно заметными. Так, однц авторы отмечали заметное или значительное колебание поверхности слоя другие регистрировали хорошую, удовлетворительную или плохую однородность слоя, и эти оценки принимались, соответственно, за слабый барботаж пузырей, возникновение поршней и ярко выраженный поршневой режим. В одной из абот описан слой в состоянии плохой однородности, которое, видимо, соответствует интенсивному барботажу пузырей или началу их образования. В других работах определяли условия возникновения поршней, причем в первой из них зафиксированы скорости газа в начале поршневого режима. [c.193]

    Колпачковые тарелки (рис. 1.21) наиболее универсальны онп обеспечивают стабильную работу колонн в большинстве процессов, хотя по ряду показателей и уступают тарелкам других типов (см. табл. 1.17). Допустимая скорость паров для колпачковых тарелок наименьшая, несмотря на наибольшую иссле-дованность и отработанность их конструкции. Это объясняется тем, что пары от поверхности жидкости отрываются вертикально, а их локальные скорости значительно превышают средние. Так, скорость паров, отнесенная к площади барботажа, для колпачковых тарелок наивысшая. В тарелках новых типов зеркало барботажа в 2—3 раза больше, чем в колпачковых (следовательно, наивысшие локальные скорости незначительно больше средних) направление взлета капель с поверхности жидкости наклонное, что затрудняет их сбрасывание на вышележащую тарелку. Колпачки создают большое сопротивление [c.76]

    Скорость реакции не зависит от объема катализатора и пропорциональна поверхности контакта фаз, поэтому для обеспечения высокой скорости необходимо создать большую поверхность раздела между фазами. Если реагенты находятся в жидкой фазе, то большая поверхность контакта на единицу объе1 а катализатора создается интенсивным перемешиванием, в результате которого образуется эмульсия катализатора в фазе реагентов или реагентов в фазе катализатора. Если реагенты газообразны, то применяется барботаж газа через слой жидкого катализатора. В обоих случаях удельная поверхность контакта (суммарная поверхность капель или пузырей в единице объема катализатора) обратно пропорциональна среднему диаметру частиц дисперсной фазы. [c.157]

    Сточные воды установки (конденсат водяных паров, содержащихся в газах пиролиза) перед поступлением на биологическую станцию предварительно подвергаются флотации и отпарке с целью уменьшения содержания углеводородов. Флотация происходит в сборнике 34. В сточной воде растворяются инертный газ, воздух или метано-водородная фракция, имеющие избыточное давление 6 ат. Затем вода с пузырьками газа переходит в сборник 33, где давление снижается до атмосферного. Пузырьки газа абсорбируют на своей поверхности смолу и, выделяясь из воды, образуют пену, которая переливается в сборник смолы 31. Смолу из сборника 31 откачивают на склад, а воду, содержащую углеводороды (около 300—500. м/л), направляют в отпарную колонну 27. в которую через барботажиое устройство поступает пар с избыточным давлением 12 ат. Пары смолы и водяной пар на выходе из отпарной колонны конденсируются, а затем расслаиваются во рентийском сосуде, откуда вода возвращается на отпарку, а смола— в сборник 31. Вода из нижней части отпарной колонны с уменьшенным содержанием углеводородов (до 40—50 мг л) направляется на биологическую станцию. [c.16]

    Контакт газа с жидкостью может быть осуществлен пропусканием пузырьков газа через слой жидкости (барботаж). При барбо-таже создается очень большая поверхность контакта фаз, особенно в том случае, когда пузырьки газа достаточно малы. [c.167]

    Колонна с колпачковыии тарелками. Процесс барботажа на колпачковой тарелке (рис. IV-20) сложен. Качественную картину процесса можно представить следующим образом. Газ проходит через отверстия (прорези) в колпачке в виде струек, которые обычно соединяются одна с другой. При этом некоторая часть сечения прорезей обнажается и образуются соединительные каналы между пространством над тарелкой и пространством внутри колпачка. Часть газа распределяется в жидкости, образуя пену. В то же время газ увлекает за собой жидкость в виде капель. Значительная часть газа проходит через каналы, не создавая поверхности контакта с жидкостью в зоне барботажа. Пространство над тарелкой заполнено распыленной жидкостью. Таким образом, различают следующие [c.168]

    Реактор для получения сульфата аммония. Сульфат алмония можно получить взаимодействием газообразного аммиака с серной кислотой в реакторе с барботажем, изображенном на рпс. 1У-31. Диаметр цилиндрической части промышленного реактора этого тина 4 м. Высота барботажного приспособления (от перфорированного трубопровода для барботажа до поверхности кислоты в реак- [c.177]

    Различают также тарелки барботажного и струйного типов. Элементы контактных устройств барботажных та[зелок (колпачки, клапаны, отверстия в полотне тарелки) создают движение пара в слое жидкости почти в вертикальном направлении (рис. Х1У-25). Среди барботажных можно выделить тарелки со стесненным и свободным зеркалом барботажа (рис. Х1У-26). В тарелках со стесненным зеркалом барботажа часть поверхности жидкости (примерно от 50 до 75%) занята устройствами для [c.288]


Смотреть страницы где упоминается термин Поверхность при барботаже: [c.556]    [c.558]    [c.140]    [c.116]    [c.24]    [c.140]    [c.283]    [c.219]    [c.276]    [c.78]   
Абсорбция газов (1966) -- [ c.559 , c.604 ]




ПОИСК





Смотрите так же термины и статьи:

Барботаж

Барботаж поверхность контакта фаз

Межфазная поверхность поверхность контакта фаз при барботаже

Удельная поверхность при барботаже



© 2025 chem21.info Реклама на сайте