Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пепсин изучение структуры

    Гидролиз пепсином, повидимому, весьма полезен при изучении структуры рибонуклеазы [352]. В результате гидролиза этот белок вполне воспроизводимо может быть превращен в 13—15 пептидов, средняя длина которых равна 8—9 аминокислотным остаткам. [c.180]

    Аспартатные протеиназы ретровирусов уже через два-три года после (IX открытия стали одними из наиболее экспериментально изученных фер-Центов. Основное внимание было уделено протеиназе ШУ-1, о структуре к функции которой сейчас известно, пожалуй, больше, чем о таком классическом объекте, как пепсин, открытом еще в 1836 г. Подробно об этом в следующем томе. Сейчас лишь отметим, что стал очевиден один из эффективных и простых путей поиска средств защиты от ретровируса. Он Заключается в создании особых ингибиторов аспартатной протеиназы [c.545]


    Особенно трудной задачей является выделение труднорастворимых белков, например, склеропротеинов (белки покровных и соединительных тканей — кератин, фиброин шелка и др.). В этих случаях после удаления большей части растворимых белков пытаются использовать устойчивость склеропротеинов к действию пепсина или трипсина, разрушая с помощью последних остатки сопутствующих белков. Нередко исследователям приходится для изучения отдельных особенностей состава и структуры этих белков заведомо идти на их растворение в условиях, когда происходит частичная фрагментация белка (в растворах щелочей, мочевины, бромистого лития, восстанови-, телей, расщепляющих дисульфидные связи, и т. п.). [c.16]

    Эти разнообразные алкилирующие агенты применялись главным образом для метилирования фибриллярных белков (шерсть, фиброин шелка и желатина) [75—77], при изучении структуры этих белков и при поисках их ценных производных. Серьезному исследованию был подвергнут также инсулин [78]. Чарльз и Скотт [79], обрабатывая инсулин йодистым метилом, добились почти полного инактивирования этого кристаллического гормона. Обработка разбавленной щелочью при 0° привела к восстановлению 30% его активности. Хотя сами ваторы и не считают, что инактивирование инсулина обусловлено этерификацией, другие исследователи впоследствии отмечали, что условия реакции были благоприятными для этерификации, и указывали на лабильность образовавшейся эфирной связи в щелочной среде [18, 19] (см. ниже). Иенсен и его сотрудники [80] сообщили об уменьшении содержания цистина в инсулине после обработки последнего диазометаном и йодистым метилом, а также об уменьшении содержания аминного азота при опытах с диазометаном. Оба эти реагента инактивируют инсулин обратимо. Возможно, что одновременно происходят как этерификация, так и метилирование. Помимо этих исследований, Гауровитцом [81] было произведено исчерпывающее метилирование гемоглобина и яичного альбумина диметилсульфатом, а Херриотт [18] сообщил, что при введении 15 метоксильных групп в молекулу пепсина последний инактивируется. [c.296]

    В середине 1930-х годов Дж. Берналом, Д. Ходжкин, И. Фанкухеном, Р. Райли, М. Перутцем и другими исследователями начато изучение кристаллографических трехмерных структур глобулярных белков. Получены лауэграммы пепсина, лактоглобулина, химотрипсина и некоторых других хорошо кристаллизующихся водорастворимых белков. Картины рассеяния рентгеновских лучей от монокристаллов содержали десятки тысяч четко выраженных рефлексов, что указывало на принципиальную возможность идентификации координат во много раз меньшего числа атомов белковых молекул (за исключением водорода). На реализацию этой возможности ушло более четверти века. Однако сам факт наблюдения богатых отражениями рентгенограмм говорил о многом. Например, он позволил сделать вывод об идентичности всех молекул каждого белка в кристалле, как правило, не теряющего в этом состоянии свою физиологическую активность. Кроме того, были оценены ориентировочные размеры, формы, симметрия и молекулярные массы исследованных белков, размеры их элементарных ячеек, а также возможное число аминокислотных остатков в ячейке. Дальнейшее развитие этой области вплоть до начала 1960-х годов замкнулось на решении внутренних, чисто методологических задач, связанных с расшифровкой рентгенограмм. [c.70]


    Интенсивное изучение биологических катализаторов дало возможность составить целостное представление об этих, по сути, наиболее важньгх структурах живой материй. В частности, было установлено, что все ферменты являются макромолекулами белковой природы. (Каталитическая активность специфичных полинуклеотидов, принимающих участие в сплайсинге РНК, является исключением, подтверждающим общее правило.) Первостепенное значение для функций ферментов имеет первичная структура, определяющая тип катализируемых реакций. Гидролиз пептидных связей трипсином или пепсином необратимо инактивирует ферменты. Для проявления каталитического действия большое значение имеет также нативность высших белковых структур (гл. 3). Обратимая денатурация является фактором подавления или восстановления ферментативной активности. Физико-химические свойства ферментов соответствуют таковым для белков, причем заряд играет существенное значение для каталитического акта. Молекулярные массы ферментов лежат в пределах от 10 до 1000 kDa и более, т. е. в большинстве случаев фермент по размерам гораздо больше, чем субстрат. [c.61]

    Вывод, сделанный на основании рассмотренных результатов физико-химических исследований, характеризующих воздействие углеводородов на структуру белков, подтвердился и при изучении влияния углеводородов на биологическую активность ферментов (на примере некоторых протеаз). Углеводороды, солюбилизированные ферментами, тормозят протеолитические реакции пепсина, химотрипсина и трипсина. Однако углеводороды не влияют на лгаксимальную скорость гидролиза, а лишь увеличивают константу Михаэлиса. Эти результаты, а также литературные данные позволяют сделать вывод о том, что углеводороды, являясь конкурентными ингибиторами протеолитических ферментов, существенно не изменяют их структуры [163, 164]. [c.32]

    Работы по химии белков успешно развиваются Е. Д. Каверзневой и сотрудниками, которые основное внимание обратили на изучение белковых комплексов здесь особенно ценные результаты были получены при исследовании природных гликопротеидов (яичный альбумин и др.), существенно обогатившие наши знания о химической специфике этих сложных биополимеров. Работы по выяснению структуры гликопротеидов (групповые вещества крови и др.) широко ведутся также Н. К. Кочетковым и В. А. Деревицкой, которые получили интересные данные об основных чертах химического строения этих соединений. Изучение первичной структуры пепсина интенсивно проводится в последние годы В. М. Степановым. Химическое изучение белковых веществ, в частности ферментов, параллельно с биохимическими исследованиями с большим успехом развивается А. Е. Браунштейном, [c.514]

    Изучение белков в XIX в. сдерживалось несовершенством методов разделения белковых смесей, что не давало возможности исследовать структуру и свойства индивидуальных белков. Лишь в конце XIX в. получили распространение эффективные методы разделения белков с помощью осаждения нейтральными солями. Так, в 1926 г. Д. Самнер выделил из семян канавалии белок (фермент) уреазу в кристаллическом состоянии Дж. Нортроп и М. Кунитц в 1930—1931 гг. получили кристаллические пепсин и трипсин (ферменты желудочно-кишечного тракта). [c.36]

    Аспартатные протеиназы ретровирусов сразу же после их открытия начали интенсивно исследоваться и через 2—3 года стали одними из наиболее тщательно изученных ферментов. Основное внимание было уделено аспартатной протеиназе HIV-1, о структуре и функции которой сейчас известно, пожалуй, больше, чем о таком классическом объекте, как пепсин, открытом еще в 1836 г. Последовательность HTV-l протеиназы состоит из 99 аминокислотных остатков, тогда как аспартатные протеиназы позвоночных и микроорганизмов содержат их более трехсот. В ней встречается фрагмент Asp—Thr— Gly, присутствующий в каждом домене у всех пепсиноподобных ферментов. Л. Пёрл и У. Тейлор предположили, что физиологически активная форма HIV-1 протеиназы включает две молекулы, ассоциированные посредством невалентных взаимодействий [381]. Я. Чанг и соавт. проверили это предположение экспериментально [382]. Методами генной инженерии была синтезирована полипептидная цепь из 203 аминокислотных остатков, составляющих две молекулы ШУ-1 протеиназы, С- и N-концы которых соединены пентапептидным участком Gly—Gly—Ser—Ser—Gly. Такой валентно связанный димер в физиологических условиях спонтанно принимал конформацию нативного димера и обладал идентичной с ним активностью. Этот вывод недавно нашел подтверждение в работе Т. Бхата и соавт., определивших трехмерную структуру аналогичным образом связанного димера протеиназы HIV-1 с разрешением 1,8 A [383]. При замене одного из двух каталитически важных остатков Asp-25 на Gly актив= ность пропадает. К тем же результатам привело исследование [c.85]

    В случае восстановления внутрицепьевых дисульфид-ных связей в молекуле рибонуклеазы в присутствии концентрированной мочевины такой белок утрачивает, по данным физических методов исследования, нативную конформацию. Одновременно происходит разрушение его антигенных детерминант, поскольку денатурированный белок не реагирует с антителами против нативного белка. Однако восстановление двух из четырех дисуль-фидных связей в молекуле рибонуклеазы, выполненное в отсутствие денатурирующих агентов, не сказывается на антигенных свойствах фермента. Аналогичные данные были получены при изучении пепсина, папаина, иммуноглобулина О. Следовательно, сама по себе дисульфидная связь не определяет структуры антигенных детерминант, если при ее разрыве не разрушают стабилизирующих вторичную и третичную структуру нековалентных связей. [c.31]



Смотреть страницы где упоминается термин Пепсин изучение структуры: [c.291]    [c.193]    [c.489]    [c.562]    [c.286]    [c.43]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.2 , c.399 , c.400 ]




ПОИСК





Смотрите так же термины и статьи:

Пепсин

Пепсин структура



© 2025 chem21.info Реклама на сайте