Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии транспорт белков

    Втор 1Я важная функция белков — транспорт веществ. У одноклеточных это в основном транспорт через мембрану. Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время фосфолипидная мембрана непроницаема для таки.х важнейших компонентов, как аминокислоты, сахара, ионы щелочных металлов. Их проникновение внутрь клетки из окружающей среды происходит при участии специальных транспортных белков, вмонтированных в мембрану. Наприме 5, у многих бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара — лактозы (6). Последняя представляет собой дисахарид, образованный молекулами глюкозы и ее изомера галактозы  [c.35]


    Обычно транспорт белков через клеточную мембрану обеспечивают N-концевые аминокислотные последовательности, называемые сигнальными пептидами (сигнальными последовательностями, лидерными пептидами). Иногда удается сделать белок секретируемым, присоединив к кодирующему его гену нуклеотидную последовательность, ответственную за синтез сигнального пептида. Однако простое наличие сигнального пептида не обеспечивает эффективной секреции. Кроме того, Е. соН и другие грамотрицательные микроорганизмы обычно не могут секретировать белки в окружающую среду из-за наличия наружной мембраны. Есть по крайней мере два способа решения этой проблемы. Первый - использование грамположитель-ных про- или эукариот, лишенных наружной мембраны, второй - создание грамотрицательных бактерий, способных секретировать белки в среду, с помощью генной инженерии. [c.126]

    А — пурпурные бактерии Б — зеленые серобактерии В — цианобактерии. Хл — хлорофилл бхл — бактериохлорофилл феоф — феофитин бфеоф — бактериофитин ФС — фотосистема Ре8 — железосеросодержащий белок Фд — ферредоксин Фп — флавопротеин ПХ — пластохинон МХ — менахинон УХ — убихинон ПЦ — пластоцианин Ь, с, / — цитохромы. Прямоугольниками обведены компоненты реакционного центра, овалом — компоненты электронного транспорта, связанные с мембраной. Двойной стрелкой обозначены перемещения электрона в реакционном центре [c.283]

    Если к клеткам Е. соН добавить в отсутствие глюкозы какой-нибудь (3-галак-тозид типа лактозы, то они начнут синтезировать в больших количествах не только р-галактозидазу, но и два других функционально связанных с ней белка- Р-галактозиЭпермеазу и белок А. Пер-меаза-мембранный белок, способствующий транспорту р-галактозидов из внешней среды в клетку. Функция белка А не совсем ясна, однако не исключено, что он играет важную роль в процессе метаболической утилизации галактозидов. Если один индуктор вызывает синтез группы связанных между собой ферментов или белков, как это имеет место в данном случае, такой процесс называют координированной индукцией. Сегодня мы знаем, что Е. соИ и другие бактерии способны в ответ на различные специфические индукторы синтезировать большое число разных связанных друг с другом ферментов или групп ферментов. Такая способность позволяет бактериям быстро приспосабливаться к новым условиям и экономно использовать самые разнообразные питательные вещества, которые появляются в окружающей среде. [c.955]


    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Олнако клеточные мембраны пропинаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, называемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лищь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в олном-единственном гене приводят к исчезновению у бактерий способности гранспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цистинурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистина в моче, что приводит к образованию цистиновых камней в почках. [c.381]

    У бактерий и растений большинство систем активного транспорта, приводяшихся в действие ионными градиентами, используют в качестве котранспортируемого иона Н", а не Na". В частности, активный транспорт большей части Сахаров и аминокислот в бактериальные клетки обусловлен градиентом Н" через плазматическую мембрану. Наиболее хорошо изученный пример гакого рода - переносчик лактозы (пермеаза). Этот трансмембранный белок, состоящий из одной полипептидной цепи (длиной около 400 аминокислотных остатков), но-видимому, пересекает липидный бислой по крайней мере девять раз. Он осуществляет Н"-зависимый симнорт с каждой транспортируемой в клетку молекулой лактозы переносится один протон. [c.391]

    Существенным для понимания всех аспектов переноса электронов в мембранах, а также сопряженных с ним процессов является вращательная и латеральная диффузия не только подвижных переносчиков, но и отдельных комплексов и их агрегатов. Подвижность комплексов приводит к тому, что теряет смысл понятие единой структурной электронтранспортной цепи, так как стехиометрия взаимодействия комплексов определена лишь в среднем и может меняться при изменении внешних условий. Если регулируемая условиями внешней среды латеральная асимметрия в распределении комплексов переносчиков достаточно хорошо установлена для фотосинтетического аппарата высших растений, то, несомненно, аналогичные процессы регулирования пространственной обособленности отдельных реакций могут происходить и у фотосинтезрфующих бактерий и митохондрий. Динамическая организация электронного транспорта, проявляющаяся в процессах агрегации— дезагрегации как отдельных переносчиков электронов с комплексами, так и самих комплексов, приводит к быстрому и высокоэффективному переносу электронов (внутри комплексов), увеличивает надежность функционирования цепи переноса электронов, обеспечивая возможность замены вышедших из строя элементов, а также их встраивание в процессе б иогенеза и, кроме того, обеспечивает возможность эффективных способов регуляции транспорта электронов за счет изменения степени агрегации комплексов, их пространственной обособленности и взаимного положения в мембране. Асимметричная латеральная и трансмембранная организация комплексов в мембране может направленно регулироваться такими факторами, как липидный состав мембраны, соотношение липид/белок, микровязкость, энзиматическая модификация белков, ионный состав среды и др. [c.286]

    Другое предположение исходит из того, что фагу необходимы функции бактерии, в определенных условиях обязательные и для поддержания ее жизнеспособности. Действительно, иапример, белок LamB f. o//, рецептор фага A, обеспечивает транспорт в клетку мальтозы, а рецептор фага BF23 одновременно является рецептором и витамина Bia и т. д. В этом случае фагоустойчивые клетки могут оказаться в определенных условиях неконкурентоспособными и их популяция будет снова замен ена популяцией чувствительных клеток. Ниже будут рассмотрены механизмы, определяющие устойчивость бактерий к фагам. [c.197]

    В гл. 5 уже упоминались пурпурные мембраны галофильных бактерий Я. ка1оЫит, которые позволяют этим бактериям выживать в анаэробных условиях. Пурпурный пигмент представляет собой один белок, бактериородопсин, в какой-то мере родственный зрительному пигменту, обнаруженному в дисках палочки сетчатки глаза млекопитающих. Этот белок имеет широкий максимум поглощения при 570 нм [5,26]. Поглощение света приводит к превращению формы, поглощающей при 570 нм, через ряд короткоживущих промежуточных форм в продукт, который поглощает максимально при 412 нм и возвращается путем обычной термической реакции к исходной форме с максимумом при 570 нм в течение нескольких миллисекунд. Все это явно сопровождается изменением конформации молекулы, причем частота конформационных переходов составляет около 100 Гц. При этом происходит выброс протонов во внешнюю среду и их захват из внутреннего пространства. Таким образом, в интактных клетках бактериородопсин действует как фотоиндуцированный протонный насос. В результате его работы бактерия может поддерживать необходимые ионные градиенты и фосфорилировать АДФ [11,38]. В силу относительной простоты системы есть все основания полагать, что этот протонный насос может оказаться первым примером механизма активного транспорта, который удастся расшифровать на молекулярном уровне. [c.337]


    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]


Смотреть страницы где упоминается термин Бактерии транспорт белков: [c.68]    [c.254]    [c.254]    [c.391]    [c.236]    [c.179]    [c.308]    [c.370]    [c.173]    [c.94]    [c.197]    [c.172]    [c.313]    [c.350]   
Молекулярная биология клетки Том5 (1987) -- [ c.159 ]




ПОИСК







© 2024 chem21.info Реклама на сайте