Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопряжение также Резонанс

    С—С — 1,48 А [18]. Поскольку для простой связи С—С, не соседствующей с ненасыщенной группой, типичное межатомное расстояние равно 1,54 А (разд. 1.10), укорочение простой связи в бутадиене может служить доказательством резонанса. Однако подобное укорочение связи можно также объяснить изменениями в гибридизации (разд. 1.11). Предлагались и другие объяснения этого явления [19]. Энергия резонанса бутадиена, вычисленная по теплотам сгорания или гидрирования, составляет лишь около 4 ккал/моль такая величина вряд ли обусловлена только резонансом. Расчет по теплотам атомизации дает величины энергии резонанса 4,6 ккал/моль для 1,3-пента-диена и —0,2 ккал/моль для 1,4-пентадиена. Каждое из этих соединений имеет две двойные связи С = С, две простые связи С—С и восемь связей С—Н и, казалось бы, позволяет сравнить сопряженную и несопряженную системы тем не менее в строгом смысле эти соединения мало сравнимы. В цис-1,3-пентадиене имеются три связи зр -С—Н и пять связей —Н, а в 1,4-пентадиене — две и шесть соответствующих связей. Кроме того, в 1,4-диене обе простые связи С—С относятся к sp —5р -типу, а в 1,3-диене только одна такая связь, а другая связь С—С принадлежит к 5p —хр -типу. Поэтому вполне возможно, что некоторая доля и без того небольшой величины 4 ккал/моль является не энергией резонанса, а разностью энергий связей, имеющих различную гибридизацию [20]. [c.53]


    Проблема измерения ароматической стабилизации на основании модели простоя несопряженной т-электронной системы состоит в том, что энергия делокализации не является уникальным свойством циклических систем. Например, на основе простого метода МО Хюккеля можно показать, что энергия делокализации бутадиена составляет 0,472/3 другие ациклические сопряженные системы также имеют некоторую энергию делокализации. Пытаясь найти меру ароматичности, необходимо оценивать дополнительный вклад в общую энергию делокализации вследствие того, что соединение имеет циклическую структуру. В связи с этим было высказано предположение [36], что при расчете энергии резонанса следует использовать энергии связей неароматических систем, а не несопряженных систем в качестве эталонных структур. Было показано, что энергия т-связи линейных полиенов прямо пропорциональна длине цепи. Каждая дополнительная простая или двойная связь С—С в полиене вносит в общую т-энергию такой же вклад, как и в случае бутадиена или гексатриена. Это, конечно, не означает, что отсутствует сопряжение, но показывает, что сопряжение также влияет на энергию связи в нециклических системах. Следовательно, можно рассчитать эталонные энергии т-связей для любой циклической или ациклической т-системы, складывая величины, соответствующие определенным типам связей. Этот аддитивный принцип применим к т-связям с гетероатомами в такой же степени, как и к связям углерод — углерод. [c.36]

    Полярный резонанс (или полярное сопряжение) также приводит к перераспределению я-связности в классической структуре, а также к перераспределению неподеленных электронных пар и зарядов в соответствии с правилом 3. В качестве простейших и в то же время наиболее типичных модельных примеров полярного сопряжения укажем на аллильные катион и анион, о которых уже шла речь выше. Классические структурные формулы, отвечающие исходным нулевым (аддитивным) энергетическим уровням, записываются в виде следующих предельных структур  [c.51]

    Ароматичность—совокупность свойств, отражающих структурные и энергетические особенности, а также реакционную способность плоских циклических систем, содержащих (4п + 2) л-электронов, которые вовлечены в замкнутую цепь сопряжения. Ароматичность характеризует повышенную термодинамическую устойчивость ароматического соединения, обусловленную делокализацией л-электронов. Мерой ароматичности является энергия резонанса (или энергия делокализации), которую необходимо дополнительно затратить на разрушение циклической системы делокализованных сопряженных двойных связей. Следовательно. энергия резонанса характеризует вклад циклического сопряжения в теплоту образования соединения. См. также Бензол. [c.36]


    Несколько иное, хотя и близкое по существу к приведенному, описание делокализации связей при их сопряжении дает резонанса теория (см. также Мезо-мерия). Напр., в случав бутадиена-1,3 наряду с основной структурой СН2=СН—СН=СНг рассматриваются структуры  [c.490]

    Используя метод молекулярных орбиталей, можно найти, что при перекрывании шести р-орбиталей в соединении 9 образуется шесть молекулярных орбиталей, из которых три являются связывающими (они показаны на рис. 2.5, где указаны также их энергии). Отметим, что два углеродных атома не участвуют в орбитали a-fp. Полная энергия всех заселенных орбиталей выражается величиной 6а + 6,900р, так что энергия резонанса равна 0,900р. Порядки связей, определенные по методу молекулярных орбиталей, составляют 1,930 для связи С(1)—С(2) 1,859 для связи С(3)—С(6) и 1,363 для связи С(2)—С(3) [22]. Сравнивая эти величины с приведенными ранее значениями для бутадиена (разд. 2.2), можно видеть, что связь С(1)—С(2) имеет более, а связь С(3)—С(6) менее выраженный характер двойной связи. Этот вывод согласуется с представлением о резонансе рассматриваемого соединения связь С(1)—С (2) двойная в трех из пяти канонических форм, тогда как связь С(3)—С (6)—только в одной форме. В большинстве случаев кросс-сопряженные молекулы легче рассматривать посредством метода молекулярных орбиталей, а не метода валентных схем. [c.56]

    Несмотря на низкую энергию резонанса, а также на то, что по межатомным расстояниям в бутадиене нельзя судить о делокализации, тот факт, что молекула бутадиена плоская [21], свидетельствует о наличии некоторой делокализации, хотя и не в такой степени, как предполагалось ранее. Аналогичная делокализация найдена и в других сопряженных системах (например, С = С—С = 0 и С = С—С = М), в протяженных системах с тремя и более сопряженными кратными связями, а также в соединениях, где двойная или тройная связь сопряжена с ароматическим кольцом. [c.53]

    Необходимо иметь количественную характеристику, определяющую в рамках метода устойчивость сопряженных соединений. В качестве такой характеристики применяется энергия делокализации ОЕ (часто называется также энергией резонанса). [c.243]

    По мере развития системы сопряжения в конденсированных ароматических соединениях и соответствующего повышения степени /( локализации п-электронов в молекуле возрастает также диамагнитная восприимчивость. Наряду с этим на определенной стадии увеличения протяженности сопряженной системы вещества приобретают парамагнитные свойства (сигнал ЭПР — электронный парамагнитный резонанс), которые свидетельствуют о появлении неспаренных электронов. [c.410]

    Приведенные значения а/ вычислены в основном исходя из данных химических сдвигов в спектрах ядерного магнитного резонанса (ЯМР) л<ега-замещен-ных фторбензолов. Резонансные постоянные отражающие способность к полярному сопряжению, даны также преимущественно на основании химических сдвигов ЯМР для пара- и л(ета-замещенных фторбензолов  [c.397]

    Индуктивное влияние атомов, участвующих в таком резонансе, несомненно, также изменяется. Поскольку в результате изменения индуктивного эффекта сопряжение усиливается или ослабляется, предсказать его величину не всегда легко. Эффекты, наблюдаемые в молекулах с сопряженными связями, более подробно обсуждаются в работах [22, 24]. [c.163]

    Несопряженные атомы водорода ацетилена дают линии резо Нанса, соответствующие химическим сдвигам 2,45—2,65 млн от носительно линии ТМС, а сопряженные атомы водорода — линии, соответствующие химическим сдвигам 2,8—3,1 млн относительно линии ТМС. Эта область спектра заключена между линиями протонного резонанса алкана и алкена линии протонного резонанса метилена и метина также находятся в этой области, что является ограничением данного метода. Если в молекуле производного ацетилена имеется ряд метиленовых и метиновых групп, то линии протонного резонанса могут перекрывать друг друга, однако для идентификации можно использовать значение константы взаимодействия и различные растворители. Методом ЯМР можно прослеживать восстановление ацетилена до алкена и далее до насыщения и определять тип анализируемого ацетилена. [c.258]

    Сахаро-фосфатная цепь нуклеиновой кислоты также не является сопряженной, и нуклеиновые кислоты — диэлектрики, ферромагнитные свойства, наблюдавшиеся методом электронного парамагнитного резонанса, оказались связанными с примесями железосодержащих соединений, от которых очень трудно избавиться. [c.110]

    Энергия резонанса проявляется также при определении теплоты гидрирования ненасыщенных систем с сопряженными связями. Действительно, наблюдаемые значения лежат ниже рассчитанных теоретически на основании сумм теплот гидрирования изолированных двойных связей. Для бензола, например, эта разность составляет 36 ккал моль. [c.53]

    А по сравнению с 1,54 А в алмазе или парафиновых углеводородах. Аналогичное укорочение ординарной связи в сопряженных молекулах уже ранее объяснялось резонансными взаимодействиями. Так, тот факт, что центральная связь в бутадиене также короткая (1,48 А), приписывали резонансу с возбужденной структурой, в которой центральная связь является двойной, например  [c.12]


    Мы рассмотрели также ряд свойств молекул, которые зависят от поведения отдельных электронов. В этих случаях имеются явные доказательства отсутствия аддитивности, как этого и следовало ожидать. Такие отклонения от аддитивности не могут служить свидетельством в пользу наличия резонанса в химическом смысле эти данные показывают только, что отдельные электроны в молекулах делокализованы. Это справедливо для всех молекул, вне зависимости от того, являются ли они насыщенными, сопряженными, молекулами со сверхсопряжением или ароматическими. При обсуждении таких свойств нельзя пользоваться моделью локализованных связей. Доказательства такого характера не имеют отношения к проблеме сопряжения или сверхсопряжения в химическом смысле. [c.121]

    Особым путем, позволяющим избежать перекрывания внутренних атомов водорода, может служить замена направленных внутрь СН-групп атомами азота. При изучении молекулярных моделей Фишера — Хиршфельдера Блуд и Ноллер [15] нашли, что 1, 6-диазоциклодекапентаен (XVI) почти не должен быть напряженным, а некоторое отклонение от плоскостности вследствие отталкивания неподеленных пар электронов атомов азота, вероятно, не может быть достаточным для заметного влияния на сопряжение и резонанс. Они отмечают, что структура XVII может также вносить свой вклад в резонансный гибрид. [c.471]

    З. Циклические соединения серы. Если сера входит в состав непредельного циклического соединения, то полагают, что атом серы вступает во взаимодействие не только по типу сопряжения с оттягиванием электронов за счет перекрывания 3/ -орбитали серы с я-орбиталью С = С-связи, но обладает эффектом сквозного сопряжения также за счет притяжения электронов, осуществляемого с участием Зс/-орбитали. Исходя из того, что длина связи С—5 в тиофене (1,74 А) и его дипольный момент (0,54 0) малы, а энергия резонанса велика (31 ккал/моль), Полинг [127] предложил резонансные структуры тиофена 1а и 16, отражающие резонанс с оттягиванием электронов, а также структуру 1в, которая отражает расширение электронной оболочки атома серы  [c.146]

    Эти факты в рамках теории локализованных связей объясняют стерическими эффектами, эффектами сопряжения и резонанса, а также внутри-и межмолекулярными взаимодействиями с образованием донорно-акцепторных, надвалентных связей и т. д. С точки зрения теории метода МО такое явление закономерно и вытекает из вкладов в полную энергию молекулы и ее потенциальную поверхность не только двухцентровых, но и многоцентровых орбиталей, с участием как связуюш их, так и несвязуюш их орбиталей молекулы и ее атомов. [c.147]

    Комплекс ИК-поглощенпя в области 1250—1340 см характерен для сопряженных связей С—N ароматических аминов. Колебания N—Н связей аминогрупп достаточно четко обнаруживаются по поглощению около 3230, 3350 и 3452 см . Поглощение в области 3230 м относится к обертону деформационного колебания группы усиленного резонанса Ферми с симметричными валентными колебаниями этой группы, около 3350 см 1 — к связанным, а около 3452 см — к свободным связям N—И. Характерно также поглощение около 3030 см , относящееся к ароматическим С—Н связям. [c.17]

    Ряд различных фактов свидетельствует о том, что метильная группа —СНз, присоединенная к системе, в которой имеется резонанс, или даже просто к отдельному атому, обладающему я-электронами, ведет себя так, как будто участвует в сопряжении. В меньшей степени эго относится к радикалу —СН2СН3 и другим алкильным радикалам, а также к группе >СНг. В более ранних исследованиях по этому вопросу отмечали эффект влияния алкильного замещения на скорость реакций бром- и хлорбензола казалось, что алкильное замещение приводит к притоку электронного заряда в бензольное кольцо, причем этот перенос электронов наиболее эффективен, когда в качестве заместителя выступает метильный радикал. Данные по скоростям реакций всегда трудно однозначно интерпретировать, но имеется ряд других сведений, подтверждающих это явление. Следуя Малликену [263], мы будем называть описанное явление сверхсопряжением, т. е. сопряжением, дополнительным к обычному. Прежде всего, способность метильной группы в молекуле толуола ориентировать в орто-, пара-положешя подтверждается наличием у этой молекулы дипольного момента, равного 0,4 D. В молекуле метана группа —СНд, очевидно, [c.377]

    Более сложные расчеты МО также были использованы для решения проблемы сравнения устойчивости различных сопряженных молекул. Дьюар применил методы ССП МО для расчета энергий обширного ряда циклических полиенов [6]. Величины, взятые для гипотетической локализованной модели, былЕт выведеньг из аналогичных расчетов для ациклических модельных соединений. И в этом случае наблюдалась хорошая корреляция между большой энергией резонанса и устойчивостью, полученной по термохимическим данным. Энергия резонанса, рассчитанная для бензола, составляет около 20 ккал/моль. [c.326]

    Наиб, существенной особенностью сопряженных систем с делокализованными связями является их повьпп. термодинамич. устойчивость. В ароматич. системах теплоты образования значительно вьппе, чем значения, найденные с учетом аддитивности локальных параметров, а связи характеризуются полной выравненностью длин (см. Ароматичность). Количеств, мера повыш. термодинамич. устойчивости таких систем-энергия резонанса (сопряжения, делокализации). В сопряженных системах правилам аддитивности не подчиняются также параметры ИК спектров, величины дипольных моментов и поляризуемости, диамагнитной восприимчивости и др. в этих случаях при расчете разл. характеристик вводят поправочные члены экзальтации и т. п. [c.388]

    Наиболее удивительной структурной особенностью является а-связь-Со—С длиной 2,05 А. Таким образом, кофермент представляет собой алкилкобальт — первое соединение этого типа, обнаруженное в природе. До 1961 г. полагали, что все алкилкобальты неустойчивы. Хотя связь 5 -дезоксикобаламина является ковалентной, угол Со—С—С составляет 130°, что указывает на частично ионный характер связи Со—С [160]. Уровень окисления кобальта равен 3+, и можно представить себе, что-цианкобаламин образуется при замещении одного из водородов внутри корринового цикла на Со + плюс N . Однако следует помнить, что три других цикла азота корринового цикла и азот диметилбензимидазола также образуют связи с кобальтом. Каждый атом азота отдает электронную пару на формирование ковалентных связей хелатного комплекса. В формуле, приведенной в дополнении 8-Л, это показано стрелками, с тем чтобы подчеркнуть формальное различие между этими связями и иной связью Со—N. Однако вследствие резонанса в системе сопряженных двойных связей коррина все четыре связи Со—N цикла примерно равноценны, и положительный заряд делокализован по всем атомам азота, окружающим кобальт. [c.284]

    Сопряжение относится к случаю чередующихся кратных и простых связей. Резонанс или перегибридизация приводят к тому, что кратные связи передают часть их л-электронной плотности находящейся между ними простой свяск. При этом частота колебаний простой связи повышается, а кратной связи уменьшается. В случае сопряженных связей С=С наблюдается понижение частоты на 20 - 40 см Возникает также расщепление полосы поглощения, соответствующее валентным колебаниям связей С=С, происходящим в фазе и не в фазе. Кроме того, увеличивается интенсивность поглощения. Такие наблюдения не обязательно означают изменение порядка связи, если иметь в виду значительное колебательное взаимодействие, происходящее между валентным С=С и деформащ10нным СН колебаниями. [c.163]

    Структура 5 -дезоксиаденозилкобаламина (СП) была установлена на основании кристаллографического и химического исследования. Сначала атому кобальта в этом соединении приписывалось двухвалентное состояние [212]. Однако на основании электронного парамагнитного резонанса и измерения магнитной восприимчивости установлено, что кофермент витамина Bi2 имеет в своей молекуле диамагнитный трехвалентный кобальт [57, 60, 215], Это подтверждено также данными рентгеноструктурного анализа (63, 152] и частичным химическим синтезом кофермент-кобаламина [63]. По данным синтеза метил кобаламин а с применением трития установлено, что сопряженная система корринового кольца кофермент-кобаламина идентична корриновой системе цианокобаламина (216]. [c.610]

    При использовании энергии делокализации как критерия ароматичности возникают две проблемы. Одна из них связана с не- определенностью в оценке теплоты образования гипотетическо-, го циклического полиена, а другая заключается в корректной оценке вкладов сжатия а-связей и л-делокализации в значение общей энергии делокализацни. Решение первой, более важной [ проблемы состоит в разумном выборе модельных соединений, которые позволяли бы рассчитать энергию неароматического стандарта. Чтобы избежать неопределенности при расчете энер- Гии гипотетических циклических полиенов как объектов сравне-(-Иия, решено было заменить их реальными ациклическими поли-%нами с открытой цепью. Для расчета теплот атомизации (теп- Лот, необходимых для фрагментации на отдельные атомы) Сопряженных циклических полиенов был использован метод ССП, а для расчета теплот атомизации линейных полиенов — ирование энергий двойных и простых углерод-углеродных [зей, постоянных для ациклических полиенов. Разность теп-атомизации сопряженного циклического и ациклического Юлиенов называют энергией резонанса Дьюара. Деление на число (-электронов дает величину энергии делокализации в пересчете 1а один электрон (ЭДОЭ). Этот параметр гораздо лучше, чем личина энергии делокализации (ЭД) по Хюккелю (также в перелете на один электрон), согласуется с фактическими данными. [c.359]

    Сопряжение с бензольным ядром также понижает реакционную способность вследствие стабилизации, создаваемой резонансом. В таком случае атака направляется в -положение (е). Но она также может направиться в орто- и ларс-положения, так как под влиянием реагента бензольное ядро может служить как акцептором, так и донором электронов ж). [c.159]

    Если в одном и том же цикле находятся в сопряжении три карбонильные группы, то энергия образования трикетонной структуры также может оказаться больше энергии резонанса в ароматическом кольце (18- 3>40). Так, в случае флороглюцнна (и) форма XVI приобретает большое значение. [c.360]

    Отождествление энергии структуры Кекуле с суммой энергий простых и двойных связей углерод—углерод в этане и этилене, разумеется, незаконно. Дело здесь не только в том, что надо учесть энергию сжатия и растяжения связей, длины которых различны в структуре Кекуле и в указанных молекулах, о чем подробно указывается ниже. Надо также принять во внимание различие в гибридизации атомов С и различие в энергиях отталкивания связей (раздел 7.7). Влияние вида гибридизации на энергии связей и вычисляемую с их помощью энергию резонанса впервые отметил М. Ф. Мамотенко [468]. Согласно его данным, энергия а-связи С—С при переходе от. 5р2-гибридизации к яр -гибридизации при неизменной длине связи (1,30 А) уменьшается на 18 ккал1моль, а при учете одновременного удлинения связи до 1,52 А — на ккал/моль. Сходным образом различаются энергии связей С —Н, которые в указанной схеме предполагаются одинаковыми. Недавно на это обстоятельство обратили внимание также Дьюар и Шмейзинг [93]. Энергия взаимодействия связей, имеющая тот же порядок величины, что и энергия связей, так же различна для структуры Кекуле и для эталонных молекул [492]. Поэтому ясно, что вычисление энергии структуры Кекуле из экспериментальных данных — задача невыполнимая и, по сути дела, неопределенная. Однако в действительности в ее решении нет никакой необходимости, поскольку химиков интересует не сама энергия резонанса, как таковая, а такие величины, как отступления от аддитивной схемы или теплоты реакций. Для их теоретического определения следует просто вычислить энергии сравниваемых молекул в одном и том же приближении, т. е. пользуясь волновыми функциями, построенными из одного и того же числа слагаемых (структур). Так обычно и делается, когда речь идет о сравнении между собой сходных сопряженных систем, например конденсированных ароматических углеводородов. В этом случае гибридизация атомов углерода, длины связей и другие характеристики остаются приблизительно одними и теми же, изменяется только протяженность и контур скелета молекулы. Поэтому для сравнительного изучения таких систем можно почти с одинаковым успехом пользоваться как полной вычисленной энергией, так и энергией резонанса. Если же речь идет о сравнении сопряженной системы с несопряженной, то различие в энергии будет определяться многими факторами и тогда надо вычислять полную энергию молекул. Она будет зависеть от природы агомов, от характера их гибридизации, от пространственного расположения и последовательности связей, от их длины, от изменения энергии корреляции электронов и т. д. Разумеется, при этом автоматически будет принята во внимание делокализация связей, поскольку расчет производится с учетом нескольких структур. Прим. ред. [c.269]


Смотреть страницы где упоминается термин Сопряжение также Резонанс : [c.35]    [c.347]    [c.154]    [c.535]    [c.314]    [c.645]    [c.758]    [c.365]    [c.148]    [c.347]    [c.56]    [c.163]    [c.148]    [c.286]    [c.535]    [c.181]   
Введение в теоретическую органическую химию (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сопряжение



© 2024 chem21.info Реклама на сайте