Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия преобразование в митохондриях

    Другие формы преобразования энергии в митохондриях [c.442]

    Регенерация АТР из ADP и Pj. Синтез АТР из ADP и неорганического фосфата (Pi) катализируется АТР-синтазой. Этот фермент преобразует доставляемую потоком электронов энергию в энергию фосфо-эфирных связей АТР. Фермент найден во всех мембранах, участвующих в преобразовании энергии, а именно в мембранах митохондрий, хлоропластов и бактерий. Он достаточно велик (мол. масса 350-10 ) и имеет сложное строение (рис. 7.12, Г)-состоит из головки, построенной из нескольких субъединиц, ножки и основания последнее погружено в липидный слой плазматической мембраны. АТР-синтаза катализирует присоединение фосфата к ADP с отщеплением молекулы воды, в результате чего образуется АТР. Каким образом поток протонов или протонный градиент осуществляет эту реакцию фосфорилирования, пока еще неизвестно возможно, что протоны по какому-то каналу или поре в молекуле фермента оттекают обратно внутрь митохондрии или бактерии, а освобождающаяся при этом энергия используется для фосфорилирования. [c.245]


    Если целям преобразования энергии потока электронов, возникшего благодаря окислительным процессам, в химическую энергию АТФ служит митохондрия, то аналогичную роль по отношению к электронам, возбужденным действием света в хлорофилле, играет хлоропласт. [c.207]

    В отличие от митохондрий, которые преобразуют одну форму химической энергии в другую, более доступную для превращений в биохимических процессах, хлоропласты выполняют задачу преобразования световой энергии в химическую. [c.300]

    В 60—70-е годы достигнуты большие успехи в изучении биоэнергетики. А. Ленинджер установил, что процессы биологического окисления протекают в митохондриях — "атомных станциях клетки". П. Митчелл сформулировал хемиосмотическую теорию образования АТФ, С.Е. Северин и В.П. Скулачев определили роль транспорта электронов в преобразовании энергии (1976). [c.14]

    Митохондрии являются местом заключительного этапа окисления питательных веществ и преобразования энергии в форму, доступную для использования клеткой. В митохондриях образуется до 90 % АТФ, необходимой для жизнедеятельности организма. Такая специфическая функция этих органелл клетки связана с особенностями их строения. Митохондрии имеют гладкую наружную и складчатую внутреннюю мембраны, а также внутреннее содержимое, которое называется матриксом (рис. 17). [c.50]

    Оба типа органелл, обеспечивающих преобразование энергии в клетке, имеют смешанное хозяйство . Большая часть белков этих органелл импортируется из окружающей цитоплазмы, где их синтез представляет собой конечную стадию экспрессии ядерных генов. Но в каждой органелле происходит также и свой собственный синтез белка. В случае митохондрий этот процесс направлен на синтез небольшого числа белков, каждый из которых — компонент олигомерного комплекса, состоящего из нескольких импортируемых из цитоплазмы белковых субъединиц, как показано на рис. 22.1. В случае хлоропластов эндогенная экспрессия генов органеллы может приводить к синтезу большего числа белков. [c.282]

    Преобразование энергии митохондрии и хлоропласты [c.430]

    Хлоропласты, так же как и митохондрии, используют для преобразования энергии хемиосмотический механизм, и в основе организации тех и других органелл лежат одни и те же принципы (рис. 7-38 и 7-39). Хлоропласты тоже обладают высокопроницаемой наружной мембраной и гораздо менее проницаемой внутренней, в которую встроены специальные транспортные белки, и эти две мембраны разделены узким межмембранным пространством. Внутренняя мембрана окружает большую центральную область - так называемую строму, представляющую собой аналог митохондриального матрикса и содержащую разнообразные ферменты, рибосомы, РНК и ДНК. [c.461]


    Одна из важнейших функций биологических мембран состоит в обеспечении трансформации энергии, сопряженной с преобразованием ее из одного вида в другой. Это, собственно, и составляет основу биоэнергетических процессов в клетке. Как известно, энергия, необходимая для различных видов жизнедеятельности клетки, утилизируется в виде энергии химических связей молекулы АТФ, синтез которой в живой природе осуществляется главным образом в биологических мембранах митохондрий и хлоропластов (хроматофоров). Во всех этих системах движущей силой является электронный поток, который генерируется в митохондриях за счет окисления субстрата и в хлоропластах - за счет энергии света. Здесь перенос электрона сопряжен с транслокацией протонов и синтезом АТФ в АТФ-синтезе. [c.165]

    Эндосимбиотическая гипотеза. Клеточные органеллы эукариот имеют много фундаментальных общих черт с прокариотическими клетками. Они содержат кольцевые молекулы ДНК, их рибосомы относятся к типу 70S, а мембраны содержат компоненты электрон-транспортной цепи (флавины, хиноны, Fe-S-содержащие белки, цитохромы) и выполняют функцию дыхательного или фотосинтетического преобразования энергии. Согласно симбиотической гипотезе, митохондрии происходят от бесцветных аэробных бактерий, а хлоропласты-от цианобактерий, сделавшихся эндосимбионтами каких-то примитивных эукариотических клеток. В дальнейшем должна была произойти очень большая специализация функция регенерации АТР была передана клеточным органел-лам. Наружная мембрана эукариотической клетки не содержит компонентов электрон-транспортной цепи, С другой стороны, клеточные органеллы тоже не самостоятельны они, правда, обладают собственными молекулами ДНК, однако значительная часть информации, необходимой для синтеза их белков, находится в клеточном ядре. Примером может служить рибулозобисфосфат-карбоксилаза-ключевоп фермент ав-тотрофной фиксации Oj у зеленых растений. Она состоит из 8 боль- [c.26]

    Все взаимосвязанные реакции, которые, в сущности говоря, и составляют жизнь живой клетки, зависят от ферментов. Репликация генетической информации, ее преобразование в инструкции для синтеза специфических белков (транскрипция и трансляция), самый синтез этих белков — каждый из этих процессов зависит от специфических ферментов, которые в свою очередь образуются в результате этих процессов. Более того, все реакции промежуточного обмена веществ, поставляющие строительный материал и энергию для образования новых и жизнедеятельности старых клеток, катализируются ферментами, синтезированными под контролем ДНК ядер, хлоропластов и митохондрий. Б задачу этой книги не входит рассмотрение вопроса о том, возможна или не возможна жизнь. Ясно одно жизнь как самопро-являющееся, самовоспроизводящееся, метастабильное состояние невозможна без ферментов. Главное, чему учит нас энзимология, коротко состоит в следующем все явления жизни, начиная от самых простейших реакций до сложных процессов человеческого сознания и мышления, могут быть описаны с помощью понятий, определяющих химические и физические свойства атомов, ионов и молекул. [c.15]

    Как уже указывалось, первичной функцией всех митохондрий является соединение процесса синтеза АТФ (из АДФ и неорганического фосфата) с аэробным окислением некоторых метаболитов. Связь синтеза АТФ с окислением постоянна, но природа окисляемых веществ может меняться. а-Глицерофос-фат и р-оксибутират могут полностью заменить в некоторых митохондриях субстраты трикарбонового цикла. Таким образом, вопрос об источнике электронов имеет вторичное значение на первое место выступает связь этого электронного потока с синтетическим процессом (синтезом АТФ). В этом случае происходит преобразование химической энергии химических связей некоторых метаболитов в энергию связей АТФ. Это достигается окислением метаболитов кислородом и сохранением получаемой при этом энергии для синтеза АТФ. [c.298]

    С митохондриями и хлоропластами связано замечательное свойство живой клетки запасать и преобразовывать энергию, которая необходима для разнообразных механических, электрических, химических и других процессов как самой клетки, так п организма в целом. Преобразование энергии осуществляется в системе внутренних мембран этих двух органоидов в кристах митохондрий и гранах хлороиластов. [c.9]

    Клеточные мембраны представляют собой поверхностные периферические структуры, ограничивающие внутреннее содержимое клетки от внещней среды, а у эукариот, кроме того, разделяющие внутреннюю часть клетки на функционально значимые отсеки — компартаменты (ядро и митохондрии). Основные функции клеточных мембран заключаются в изоляции клеток от межклеточной жидкости, создании внутренней архитектуры клетки, преобразовании энергии (ферменты дыхательной цепи), поддержании градиента концентраций различных веществ и электрохимического градиента, транспорте питательных веществ и продуктов жизнедеятельности организмов, передаче нервных импульсов и т. д. [c.442]


    Дыхательная цень митохондрий представлена тремя комплексами (I, III, IV), способными окислять ПАДП до воды. Фотосинтетические ЭТЦ представлены соответствующими РЦ. В центре рисунка находится комплекс III, содержащий цитохром типа Ь, цитохром типа С1 и железосерный белок Риске (ГеЗд). Донором электронов для него является убихинон Q или пластохинон PQ, акцептором — цитохром с (цит с) или пла-стоцианин РС. Среди комплексов, способных генерировать Ajin+, комплекс III, но-видимому, является наиболее универсальным, поскольку присутствует в ЭТЦ митохондрий, хлоропластов и хроматофоров. Остальные комплексы молекул переносчиков, участвующие в преобразовании энергии, являются более специфическими и присутствуют лишь у определенных групп организмов [c.212]

    Мембраны формируют также специализированные компартменты внутри клетки. Такие внутриклеточные мембраны образуют многочисленные морфологически различимые структуры (органеллы) — митохондрии, эндоплазматический ретикулум, сар-коплазматический ретикулум. комплекс Гольджи, секреторные гранулы, лизосомы и ядерные мембраны. В мембранах локализованы ферменты, функционирующие как интегральные элементы процесса возбуждения и ответа на него, а также ферменты, участвующие в преобразовании энергии в таких процессах, как фотосинтез и окислительное фосфорилирование. [c.127]

    Сопоставление последовательности первичных процессов фотосинтеза с последовательностью событий при окислительном фосфорилировапии у митохондрий показывает, что наиболее существенное и принципиальное различие в процессах преобразования энергии при дыхании и фотосинтезе заключено в способе образования допоров и акцепторов электронов. В случае митохондрий— это субстраты типа НАДН или сукцината, окисляемые (посредством ЦЭТ) кислородом воздуха, в случае хроматофоров — это восстановленные акцепторы и окисленные доноры, образованные под действием света. [c.24]

    К этому поразительному заключению пришли в результате тщательных исследований, которые бьши проведены за последние двадцать лет и убедительно показали, что главный путь преобразования энергии в биологически полезные формы одинаков не только в митохондриях и хлоропластах, но также и в клетках бактерий. Энергия преобразуется с помощью процесса, получившего название хемиосмоса в этом процессе используются электроны, богатые энергией, которые были либо возбуждены солнечным светом, либо заключены в питательных веществах. Такие электроны проходят через ряд соединений белковой природы, встроенных в мембрану, непроницаемую для ионов, и образующих так называемую электронтранспортную цепь. Продвигаясь по этой цепи, электроны последовательно переходят на все более низкие энф-гетические уровни. С помощью энергии, отдаваемой электронами, производится перекачивание протонов с внутренней стороны мембраны на внеш- [c.7]


Смотреть страницы где упоминается термин Энергия преобразование в митохондриях: [c.247]    [c.293]    [c.271]    [c.393]    [c.208]    [c.47]    [c.266]    [c.6]    [c.39]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Преобразование



© 2025 chem21.info Реклама на сайте