Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тиристор

    Повышенной опасностью характеризуются внутренние работы с применением открытого огня. Совмещение огневых работ внутри аппарата с другими видами работ запрещается. Электросварочные установки с источниками переменного и постоянного тока, предназначенные для сварки внутри металлических емкостей, в колодцах, туннелях, должны быть оснащены устройствами автоматического отключения напряжения холостого хода или ограничения его до напряжения 12 В с выдержкой времени не более 0,5 с. В таких устройствах используют в каче-стве коммутирующих элементов тиристоры..  [c.221]


    Опыт эксплуатации показал, что применение тиристоров в качестве коммутирующих элементов устройств снижения напряжения холостого хода сварочных трансформаторов весьма эффективно. Это обусловлено практически мгновенным включением их в момент прикосновения электродом к свариваемой детали, что существенно облегчает зажигание дуги и повышает производительность труда сварщика, а также практически неограниченным числом включений, которое они выдерживают. [c.221]

    Основной недостаток тиристоров применительно к устройствам снижения напряжения холостого хода — относительно большие токи утечки. При включении тиристоров в первичную обмотку сварочного трансформатора токи утечки, даже если они составляют 50—60 мА, практически не влияют на напряжение вторичной обмотки (сварочной цепи) и не представляют опасности. [c.221]

    Иначе обстоит дело при включении тиристоров в сварочную цепь (рис. 27), когда сварщик электрически связан с полным напряжением холостого хода источников сварки. Следует также учитывать, что в данном случае неизбежно возникает необходимость в параллельном включении двух-трех тиристоров, так как из эксплуатационных соображений они работают без принудительного охлаждения, а допустимый ток в этом режиме составляет 30—35% номинального. Как правило, при включении тиристоров в сварочную цепь пониженное напряжение снимают с делителя напряжения. Разумеется, что это совершенно недопустимо, так как при перегорании резистора в сварочной цепи появится полное напряжение холостого хода источника сварки, т. е. из тех же соображений, по которым запрещается применять автотрансформаторы для снижения напряжения в тех случаях, когда напряжение понижают из условий безопас- [c.221]

Рис. 27. Схема включения тиристоров в сварочную цепь. Рис. 27. <a href="/info/22027">Схема включения</a> тиристоров в сварочную цепь.
    НОСТИ. Исходя из изложенного, представляется совершенно недопустимым ограничение напряжения холостого хода источников сварки тиристорами, включенными в сварочную цепь. В этом случае сварщик подвергается большей опасности, чем в отсутствие устройства. Такое решение, по-видимому, можно считать приемлемым только в случае установки резервного коммутирующего элемента, например автомата, обмотка отключающего электромагнита которого включена на напряжение сварочной цепи, а контакты — в сварочную цепь или в первичную обмотку трансформатора. [c.222]


    Как правило, в качестве накопителей энергии для рассматриваемых излучателей используют специальные батареи конденсаторов, а коммутаторами служат разрядники, игнитроны, тиратроны и тиристоры [44]. Расчет импульсных электродинамических и электроразрядных систем приведен в работе [3]. Для оценок максимального давления и длительности импульса можно принять [c.73]

    Особое место среди электропроводящих материалов занимают так называемые полупроводники. При низких температурах они характеризуются очень низкой электрической проводимостью, близкой к таковой диэлектриков — типичных представителей изоляторов. С повышением температуры их электрическая проводимость сильно (по экспоненциальной зависимости) повыщается, приближаясь к таковой металлов — типичных представителей проводников электрического тока. Кроме того, электрическая проводимость полупроводников сильно зависит от внешнего воздействия (давления, освещенности, наличия электрического и магнитного полей и т. п.), а также от содержания примесей и дефектов в кристаллах. Возможность в широких пределах управлять электрической проводимостью полупроводников изменением температуры, введением примесей, механическим воздействием, действием света, а также электрического и магнитного полей положена в основу их разнообразного применения. Их используют при изготовлении всевозможных диодов, транзисторов, тиристоров, фото- и термоэлектронных приборов, в качестве лазерных материалов и т. д. (см. разд. 1.22). [c.261]

    Чаще всего применяют схему ударного возбуждения колебаний контура. Накопительный конденсатор С заряжают от высокого напряжения. По команде синхронизатора открывают тиристор Т, через который этот конденсатор разряжается и возбуждает колебания в контуре. [c.93]

    Для управления температурой колонок, испарителей и детекторов (и других нагреваемых элементов) используются терморегуляторы пропорционального типа РТП-35, РТИ-36 и РТИ-36-02. В качестве датчиков температуры во всех термостатируемых зонах применены элементы платиновых термометров сопротивления (градуировка с погрешностью 0,1 %). Силовым-1 элементами, непосредственно управляющими мощностью нагревателей, являются оптронные тиристоры. [c.122]

    Применение кремния и его соединений. Кремний — ведущий современный полупроводниковый материал, который широко применяется в электронике и электротехнике для изготовления интегральных схем, диодов, транзисторов, тиристоров, фотоэлементов и т. д. Технический кремний — легирующий компонент в производстве стали (например, трансформаторная сталь), [c.213]

    Промышленностью выпускаются также преобразователи с применением тиристоров с преобразованием частоты 50 Гц в 150—8000 Гц. [c.171]

    Ртутные вентили, применявшиеся ранее в качестве статических преобразователей, уступили место полупроводниковым преобразователям управляемым — тиристорам п неуправляемым — диодам. [c.75]

    Систему самовозбуждения стали применять для гидрогенераторов сравнительно недавно. В ней нет возбудителей или вспомогательного синхронного генератора. Для возбуждения используют энергию переменного тока возбуждаемой машины, преобразованную в энергию постоянного тока статическими преобразователями диодами и тиристорами. Управляемые вентили— [c.77]

    В последние годы широкое применение находит импульсный метод катодной защиты металлических сооружений путем наложения на них пульсирующего защитного тока. Частота пульсирующего тока может меняться в широких пределах. Этот метод позволяет повысить КПД, срок службы изоляционного покрытия защищаемого объекта, снизить энергетические затраты, а также повысить надежность всей установки. В качестве таких устройств могут быть широко использованы регулируемые тиристорные выпрямители, автономные преобразователи частоты с резонансными инверторами и другие устройства на тиристорах [32]. [c.72]

    Схемы тиристорных выпрямителей однофазного и трехфазного питания, используемые для импульсной катодной защиты трубопровода, приведены на рис. 15 и 16. Выпрямители 1 выполнены по мостовой схеме на тиристорах 1 1...1/4 и Ух-.-Ув, на выходе которых включены фильтры, состоящие из индуктивности 2 и конденсатора 3. Минусовые и плюсовые выводы выпрямителей подключены соответственно к защищаемому объекту 4 и зазем-лителю 5. Управление тиристорными выпрямителями осуществляется системой управления (СУВ) 6, позволяющей осуществлять как непрерывный, так и импульсный режимы работы. На указанных рисунках также приве- [c.72]

    Управление необходимо осуществлять узкими пачками высокочастотных импульсов, причем амплитуда и длительность каждого импульса должны обеспечить надежное включение тиристоров. [c.75]

    При всех режимах работы выпрямителя и отклонениях параметров питающей сети должна быть исключена подача импульсов управления на его тиристоры, находящиеся под обратным напряжением. [c.75]

    На рис. 17 приведена блок-схема импульсной катодной установки трубопровода, где ТВ — выпрямитель, выполненный на тиристорах Сф— сглаживаю- [c.75]

    Рассмотрим, например, процесс формирования управляющих импульсов для тиристора 1 4 силового выпрямителя. В момент естественной коммутации, определяемой по напряжению 11 ФСИ выдает синхронизирующие сигналы на ФСУ, с выхода которого синхронизирующие импульсы 11а поступают на ФПИ. В резуль- [c.78]


    Схема катодной установки с использованием АПЧ для импульсной защиты трубопровода приведена на рис. 19. АПЧ с АИР состоит из тиристоров V1...V4, встречных диодов Vi-.-Ve, коммутирующих конденсатора Ск и индуктивности Lk, входной индуктивности La, защитной индуктивности 3, разделительного конденсатора Ср, диодного моста (ДМ) с фильтром Сф и системы управления (СУ). Выходы диодного моста подключены к заземли-телю 1 и защищаемому трубопроводу 2. Питание установки осуществляется от источника постоянного тока с напряжением Vd- Работа такого АПЧ с АИР подробно рассмотрена в [321. При импульсной работе СУ в необходимые моменты отпирает поочередно тиристоры Vi, Уз и Уг, 4- В результате в цепи конденсатора Ср протекает высокочастотный синусоидальный тбк, который выпрямляется. Выход ДМ подключается к заземлителю и защищаемому объекту. Изменяя частоту отпирания тиристоров, можно в широких пределах менять и выходное напряжение У,<.с., катодной установки. [c.80]

    Защитные установки с автоматическим регулированием потенциала могут быть построены и на тиристорах. Однако такие установки создают сильные высокочастотные высшие гармоники, которые при защите трубопровода передаются на близрасположенные кабели связи и вызывают в них значительные помехи, мешая так-л<е и работе радиоприемников и телевизоров. Транзисторы могут быть использованы как звенья исполнительного механизма только при малых токах, например при внутренней защите резервуаров, а для станций катодной защиты при наличии блуждающих токов они непригодны ввиду малости допустимой нагрузки. [c.225]

    В отличие от стационарных сооружений на судах находят наиболее широкое применение защитные установки с регулированием потенциала вместо управляемых вручную, поскольку требуемый защитный ток колеблется в зависимости от окружающей среды и рабочего состояния судна. Более подробные данные о преобразователях систем катодной защиты имеются в разделе 9. Защитные установки для судов должны быть особо прочными и стойкими против воздействия вибраций. Регулирование осуществляется при помощи магнитных усилителей, установочных трансформаторов с серводвигателем или по методу отсечки фазы с применением тиристоров. В отличие от защитных установок для трубопроводов защитные установки для судов могут иметь очень большую постоянную времени регулирования, поскольку требуемый защитный ток изменяется очень медленно. Защитные установки имеют в своем составе также приборы для измерения тока и потенциала на отдельных анодах с наложением тока и измерительные электроды. На крупных защитных установках ван нейшие параметры, кроме того, записываются. [c.364]

    Важное достоинство тиристоров — возможность выполнения на их базе комплексных устройств, одновременно реализующих органичение напряжения холостого хода и дистанционное регулирование сварочного тока. В этом случае снижение напряжения холостого хода обеспечивается практически без дополнительных затрат и, что не менее важно, сварщик з зинтересован в работе с такими устройствами, так как некоторые неудобства, связанные с их применением, компенсируются достоинствами дистанционного регулирования силы сварочного тока. [c.221]

    При питании электрической машины от преобразователя частоты шш управляемого выпрямителя, из-за сложных процессов коммутации силовых тиристоров и транзисторов в воздушном зазоре существует характерный спектр гармоник поля. Спектр гармоник зависит от технического состояния электродвигателя, режима работы и отклонений в работе приводимого механизма. Так как мощность двигателя в зтом случае соизмерима с мощностью питающего устройства, то искажение спектра поля в воздушном зазоре щзиведет к появлению на выводе машины соответствующих гармоник напряжения, т. е. высшие гармоники могут из зазора выйти на электрический вывод и исказить напряжение сети. [c.228]

    Управляющий электрод тиристора 8 подключен через конденсатор 10 к выходу мультивибратора, собранного на транаисторах II, 12. Первичная низковольтная обмотка бобины 9 соединена с запальной свечой 13.Контакты 1 подключены в цепь базы транзистора б через со-, противление 15.Питание мультивибратора и триггера осуществляется стабилизированным источником питания, собранным на транзисторе 16 и стабилитроне 17. [c.43]

    Если произошла вспышка паров продукта в тигле 23, сильфон 24, разжимаясь, замыкает контакты 14.При этом триггер переключается в исходное положение, и тиристор 4 отключает нагреватель 3.Если вспышки нет, нагрев продолжается до тех пор,пока через некоторое время поело псдачи очередной искры не произойдет вспышка. [c.44]

    Действие всех стабилитронов основано на нелинейности их вольт-амнерных характеристик при определенных условиях работы, иначе говоря, их сопротивление зависит от величины тока или напряжения. Все стабилизаторы напряжения вместе с ограничивающим ток сопротивлением подключают параллельно выходу выпрямителя, а все стабилизаторы тока — последовательно с потребителем (рис. А.2.1). Электронные стабилизирующие схемы отличаются тем преимуществом, что позволяют осуществлять непрерывное регулирование выходных параметров, сочетающееся с повышенной эффективностью. Отдаваемая мощность не ограничивается максимально допустимой мощностью рассеивания стабилитронов (например, опорного диода), вследствие чего эффективность стабилизаторов не зависит от нагрузки. Используя простые стабилитроны, достигают коэффициентов стабилизации < Ю . Больших коэффициентов стабилизации Аз <10 можно достигнуть при применении электронных регулирующих стабилизирующих схем. Трудна и часто проблематична стабилизация больших постоянных токов. В этих случаях используют трансдукторы (регулирование посредством различной намагниченности железного сердечника) или тиристоры (регулирование изменением длительности включения вентиля в момент прохождения полуволны). [c.441]

    Генераторы этого типа дают короткие импульсы с большой скважностью. Их недостатком является низкий КПД 30—40%), что объясняется большими потерями в токоограничивающих резисторах 2. Длительность и частота импульсов зависят от емкости и сопротивления контура и могут регулироваться лишь крупными ступенями. Более гнбш схемы, в которых начало разряда обусловливается работой специального коммутирующего устройства, нормально запирающего разрядную цепь и отпирающего ее в нужное время (рис. 9.6). Таким путем можно получать короткие импульсы большой мощности и большой скважности, но с высокой частотой следования, обеспечивающие большую производительность при высоком классе чистоты обрабатываемой поверхности. В качестве коммутирующих элементов могут служить тиратроны, электронные лампы, тиристоры и транзисторы. [c.367]

    При возникновении дугового разряда управляющее устройство полностью снимает напряжение с электродов нл 0,01—0,02 с, а затем оно плавно восстанавливается В течение 0,02—0,03 С до прежнего уровня. Во время Отсутствия тока происходит полная деионизация дугового ка-нг1ла в фильтре время его гашения обычно не превышает 0,01 с. Такое быстродействие схемы достигается благодаря тому, что в силовой цепи магнитный усилитель заменен тиристорами. Схема силовой цепи такого устройства показана на рис. 10.5. Блок силовых тиристоров 3 выполняет функции коммутирующей аппаратуры и плав-нсго регулирования напряжения на входе повышающего трансформатора. Блок силового выпрямителя 6 собран в виде моста на кремниевых диодах. [c.392]

    Для барабанных машин перспективен дугостаторный электрический привод — современный безредукторный привод, позволяющий плавно регулировать частоту вращения барабана. Он представляет собой асинхронный электродвигатель с короткозамкнутым ротором. Функцию последнего выполняет сварной, бандаж, жестко связанный с барабаном, во внешние пазы которого уложены алюминиевые стержни статор имеет форму дуги с центральным углом менее 90°, что позволяет уменьшить число пар полюсов и частоту вращения ротора. Частоту враш,ения регулируют изменением частоты напряжения двигатель,в этом случае имеет преобразователь частоты на тиристорах с независимым регулированием выходных частоты и напряжения. [c.138]

    ГО метода распределения их по силовым тиристорам позволяют существенно снизить затраты мощности на управление, значительно упростить и повысить надежность СУВ. Другим достоинством рассмотренной СУВ, как было показано выше, является нечувствительность ее к несим-метрии питающей сети, что ведет к снижению необходимой длительности пачек управляющих импульсов и потерь в тиристорах выпрямителя. [c.79]

    Сетевая катодная станция реверсивная автоматическая СКСР-1200 предназначена для защиты магистральных трубопроводов от коррозии, вызываемой знакопеременными блуждающими токами. Принцип работы — автоматическое поддержание заданного значения потенциала сооружение — земля путем фазочувствительного регулирования величины выпрямленного тока силовыми тиристорами. [c.131]


Смотреть страницы где упоминается термин Тиристор: [c.73]    [c.138]    [c.138]    [c.154]    [c.154]    [c.155]    [c.134]    [c.42]    [c.44]    [c.132]    [c.132]    [c.132]    [c.74]    [c.81]    [c.77]    [c.78]    [c.78]    [c.130]   
Электрооборудование электровакуумного производства (1977) -- [ c.79 , c.197 ]

Основы автоматизации холодильных установок Издание 3 (1987) -- [ c.74 ]




ПОИСК







© 2025 chem21.info Реклама на сайте