Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа, теплота и внутренняя энерги

Рис. 15-2. Соотношение между теплотой, работой и внутренней энергией, а-при нагревании газа в цилиндре с поршнем он совершает работу против внешней силы б-при нагревании газа в фиксированном объеме темпе- Рис. 15-2. <a href="/info/26387">Соотношение между</a> теплотой, работой и <a href="/info/3615">внутренней энергией</a>, а-при <a href="/info/49622">нагревании газа</a> в цилиндре с поршнем он совершает <a href="/info/363755">работу против внешней</a> силы б-при <a href="/info/49622">нагревании газа</a> в фиксированном объеме темпе-

    Теплота, работа и внутренняя энергия участвуют в термодинамических процессах, т. е. являются термодинамическими функциями. Ранее мы изложили основные свойства последних, а теперь покажем проявление этих свойств в конкретных термодинамических процессах изохорическом, изобарическом, изотермическом и адиабатическом. [c.57]

    Приведенные понятия опираются на представления о молекулярной структуре вещества, что соответствует современным взглядам. Однако эти определения не являются термодинамическими, так как классическая термодинамика не использует каких-либо сведений о строении вещества и вводит иные, формальные понятия теплоты, работы и внутренней энергии. С ними мы познакомимся в дальнейшем. [c.61]

    Аналогичную связь между теплотой, работой и внутренней энергией газа характеризует первый закон термодинамики, который можно записать в виде [c.26]

    Как связаны между собой теплота, работа и внутренняя энергия  [c.59]

    Единицей измерения количества теплоты, внутренней энергии, работы и других энергетических величин в системе СИ является Дж или Дж/моль. [c.19]

    Однако такая запись требует некоторых уточнений. Не следует думать, что тепло, работа и внутренняя энергия могут быть подвергнуты одинаковой оценке. Обладая способностью измеряться в одинаковых единицах, эти величины значительно отличаются друг от друга по своей физической сущности. Теплота и работа не являются формой энергии, они представляют собой лишь форму перехода энергии от одного тела к другому. Кроме того, тепло и работа являются абсолютными величинами и в уравнении (4) связаны с разностной величиной — внутренней энергией. Поэтому часто для того, чтобы более выпукло представить различие свойств энергии, теплоты и работы, первое начало термодинамики в интегральной форме записывается иначе  [c.19]

    Все величины в приведенных формулах измеряются в джоулях (Дж). В качестве иллюстрации, дающей представление о применении первого начала термодинамики, удобно рассмотреть связь между теплотой, работой и внутренней энергией при многократном поднятии груза человеком (рис. 1.3). [c.14]

    Несколько слов следует сказать о систем знаков рассматриваемых величин. В настояш ее время общепринятой является система знаков относительно системы, в которой знак минус присваивается какому-либо свойству (например, внутренней энергии), если его количество убывает, и наоборот. Аналогично, если теплота или внешняя работа увеличивают внутреннюю энергию системы (например, в эндотермических процессах или при совершении внешней работы над системой от наружного источника), их считают положительными, а если уменьшают (в экзотермических процессах или при совершении системой работы против внешних сил), то отрицательными. К сожалению, в отечественной литературе пока нет единообразия в решении этого вопроса. В химической литературе можно увидеть запись тепловых эффектов в так называемой химической системе знаков, обратной термодинамической, о которой идет речь. Знак работы, совершаемой системой, принимается положительным в большинстве отечественных учебников и отрицательным — в зарубежных. Первое начало в учебниках обычно представляют в виде [ср. с уравнением (103)] [c.325]


    Если привести в соприкосновение два тела, то молекулы этих тел, сталкиваясь между собой, передают друг другу энергию. При этом энергия передается от более нагретого тела к менее нагретому, т. е. от тела, имеющего большую среднюю кинетическую энергию молекул, к телу с меньшей кинетической энергией молекул. Тело, которое отдает энергию, охлаждается, а тело, которое ее получает, нагревается. Меру изменения внутренней энергии, перешедшей от одного тела к другому в результате энергетического взаимодействия молекул без видимого движения самих тел, называют количеством теплоты. Внутренняя энергия тела может изменяться также в процессе его расширения с преодолением сопротивления внешних сил и в процессе сжатия, под воздействием внешних сил. При расширении сжатого тела и совершении им внешней работы за счет внутренней энергии температура тела понижается, а при сжатии повышается. [c.7]

    ГИИ, перешедшей от одного тела к другому в результате энергетического взаимодействия молекул без видимого движения самих тел, называют количеством теплоты. Внутренняя энергия тела может изменяться также в процессе его расширения с преодолением сопротивления внешних сил и в процессе сжатия, под воздействием внешних сил. При расширении сжатого тела и совершении им внешней работы за счет внутренней энергии температура тела понижается, а при сжатии повышается. [c.6]

    Первый закон отражает энергетический и тепловой баланс протекающих процессов и включает принцип эквивалентности между видами энергий. Он определяет взаимосвязь между работой, теплотой и различными видами энергии. Согласно одной из формулировок теплота, подведенная к рабочему телу, расходуется на производство работы, повышение внутренней энергии рабочего тела и потерь в окружающую среду. [c.54]

    Здесь можно упомянуть о волнующей умы проблеме источника энергии для дальнейшего развития земной цивилизации. Казалось бы, в распоряжении человечества имеется огромный запас энергии в виде теплоты (внутренней энергии) тропических морей. Ведь охлаждение 1 л воды на Г эквивалентно 1 ккал и 427 кгм работы. Однако второй закон ограничивает возможность использования этой энергии — если даже найти необходимый второй тепловой резервуар с более низкой температурой в более низко расположенных слоях воды, то разность Tl — Т2 оказывается малой и получаемая работа дорогой. Попытки в этом направлении все же делаются. [c.79]

    Если рассматриваем бесконечно малые термодинамические процессы, т. е. когда система обменивается с окружающей средой бесконечно малыми количествами теплоты и работы и внутренняя энергия претерпевает бесконечно малое изменение, уравнение первого закона термодинамики запишем в виде [c.13]

    Итак, любая система характеризуется внутренней энергией, мерами измерения которой служат теплота и работа. Приращение внутренней энергии системы в любом процессе равно сумме теплоты, подведенной к системе, и работы, которую совершают внешние силы над системой. [c.119]

    Теплота и работа, Согласно молекулярно-кинетической теории каждое тело располагает определенным запасом внутренней энергии, который слагается из энергии движения молекул (поступательного и вращательного), называемой внутренней кинетической энергией, и энергии взаимного притяжения молекул — внутренней потенциальной энергии (в идеальных газах отсутствует). [c.25]

    Для конечных (не диференциально малых) количеств теплоты, внутренней энергии и работы [c.56]

    Существует другой способ интерпретации первого закона, имеющий особо важное значение для химии. Будем рассматривать уравнение (15-1) просто как определение некоторой функции, называемой внутренней энергией Е. Напомним, что при нагревании газа он может совершать работу (см. подпись к рис. 15-2), но можно и обратить этот процесс, т.е. совершать работу над газом, сжимая его, и при этом отводить теплоту, выделяемую газом. Наконец, если нагревать газ, не давая ему выполнять работу, то в этом случае происходит повышение температуры газа. И наоборот, если позволить газу, находящемуся под высоким давлением, расширяться и совершать работу, не нагревая его, то в таком процессе обнаруживается охлаждение газа. Подбирая требуемые условия, удается манипулировать величинами дат независимо. За тем, что происходит в каждом случае, удобно следить, если определять изменение внутренней энергии, АЕ, как разность между добавляемым в систему количеством теплоты и выполненной системой работой, как это следует из уравнения (15-1). Если при добавлении в систему некоторого количества теплоты система выполняет в точности эквивалентную работу, внутренняя энергия системы остается неизменной. Когда мы нагреваем газ, но ограничиваем его объем, лишая газ возможности расширяться и вьшолнять работу, внутренняя энергия газа возрастает на величину, равную поступившему в него количеству теплоты. Наконец, если мы используем газ для совершения работы, не поставляя в него теплоту, внутренняя энергия газа уменьшается на величину, равную выполненной работе. Наши обьщенные наблюдения относительно того, что в одних из этих случаев газ нагревается, а в других охлаждается, указывают на связь внутренней энергии и температуры газа. [c.15]


    Принцип эквивалентности теплоты и работы. Внутренняя энергия тела может изменяться как путем теплопередачи (нагревание или охлаждение), так и путем совершения работы. По закону сохранения энергии, открытому М. В. Ломоносовым, теплота и работа эквивалентны друг другу и могут переходить одна в другую. Впервые опытные определения соотношения между механической работой й внутренней энергией тела были осуществлены английским физиком Джоулем в период с 1840 по 1849 г. [c.11]

    Каждый процесс, в котором происходит расширение или сжатие газа, следует рассматривать как процесс перехода теплоты в механическую работу и внутреннюю энергию или обратно. Для того чтобы теп- [c.29]

    Предположим, что некоторая система за счет поглощения теплоты Q переходит из состояния 1 в состояние 2. В общем случае эта теплота расходуется на изменение внутренней энергии системы ДО и на совершение работы претив внешних сил Л Q = Ai/ + Л. [c.159]

    Приведенное уравнение выражает закон сохранения энергии, т. е. означает, что сумма изменения внутренней энергии и совершенной системой (или над нею) работы равна сообщенной (или выделенной ею) теплоте. Так, если теплота сообщается газу в цилиндре, закрытом поршнем, то газ, во-первых, нагрев.ается, т. е. его внутренняя энергия и возрастает, а во-вторых, расширяется, т. е. производит работу подъема поршня А. [c.159]

    Направление расходования подводимой тепловой энергии определяется условиями, при которых она передается системе. Если теплота подводится, например, к газу при постоянном объеме, то газ, не имея возможности расширяться, не может совершить работу расширения и вся теплота расходуется на приращение внутренней энергии. [c.37]

    Коэффициент активного тепловыделения % представляет собой относительную долю теплоты, использованной на нагревание рабочего тела (на повышение его внутренней энергии АС/) и на совершение внешней работы J PdV, от общей теплоты Q, введенной в цикл  [c.155]

    Между выделяемым или поглощаемым системой количеством теплоты aQ, количеством производимой или потребляемой системой работы dA и изменением внутренней энергии системы du, согласно первому закону термодинамики, существует зависимость  [c.127]

    Выше было показано, что теплота, поглош аемая системой при постоянном давлении, затрачивается на изменение ее внутренней энергии и внешнюю работу (4) [c.13]

    В термодинамических процессах осуществляется передача внутренней энергии от одних тел к другим. Эта энергия может передаваться в виде теплоты и в виде работы. Различие состоит в том, что при передаче энергии путем теплоты отсутствует видимое движение тел относительно друг друга, а взаимодействие между телами выражается в переходе энергии от молекул одного тела к молекулам другого. Передача энергии в виде работы связана с видимым перемещением тел, в частности с изменением их объема. Поэтому про работу говорят, что она совершается, а про теплоту — что она подводится (или отводится). [c.25]

    В изотермическом процессе нет изменения температуры газа, поэтому его внутренняя энергия не изменяется, а вся подводимая теплота расходуется на совершение внешней работы  [c.29]

    Следует отметить, что первый закон термодинамики не дает возможности найти полное значение внутренней энергии системы в каком-либо состоянии, так как уравнения, выражающие первый закон, приводят к вычислению только изменения энергии системы в различных процессах. Точно так же нельзя непосредственно измерить изменения внутренней энергии в макроскопических процессах можно лишь вычислить эти изменения с помощью уравнения (I, 26), учитывая измеримые величины—теплоту и работу данного процесса.  [c.33]

    Отметим, что теплота и работа (каждая в отдельности) не обладают свойством функции состояния, выражаемым уравнением (I, 3) или (I, 5) и присущим внутренней энергии. Теплота и работа процесса, переводящего систему из состояния 1 в состояние 2, зависят, в общем случае, от пути процесса, и величины SQ и оЛ не являются дифференциалами функции состояния, а суть просто бесконечно малые величины, которые мы будем называть элементарной теплотой и элементарной работой. [c.33]

    Таким образом, дифференциал внутренней энергии dll имеет иные математические свойства, чем элементарные теплота 3Q и работа 8Л. Это имеет существенное значение при построении системы термодинамики. [c.33]

    Перед тем, как поступить в реактор, пары пропана предварительно подогреваются от 25 до 427 С, Определить теплоту, работу, изменение внутренней энергии, изменение энтальпии, если давление в нагревателе поддерживаехса постоянным (необходимые сведения см. в 12]). [c.67]

    В терм0дина1мике принято считать теплоту, поглощаемую системой, положительной. За счет поглощения теплоты внутренняя энергия увеличивается. Работу считают положительной, если она совершается системой против внешних сил. В противном случае эти величины берутся с отрицательным знаком [c.12]

    В этом уравнении 17, названная Клаузиусом внутренней энергией, выступает как мера материального движешта во всех его превращениях из одной формы в другую, в пределах термодинамики внутренняя энергия выступает как общая мера работы и теплоты. Внутренней энергией мы называем энергию, заключенную в системе. При этом обычно не учитывается кинетическая энергия системы в целом и потенциальная энергия системы во внешнем поле. При микроскопическом рассмотрении это означает, что внутренняя энергия равна сумме кинетической энергии отдельных молекул и энергии вза одействия между ними. Другими словами, внутренняя энергия системы является функцией лишь внутренних параметров состояния (температуры, массы отдельных элементов системы и т. д.) и является экстенсивной величиной (17 = X] 17 , где 17 — внутренняя энергия г-й области системы). [c.12]

    Третий пример -т расширение газа в пустоту. В данном случае вопрос об-обратимости сводится к тому, возможен ли процесс, единственный результат которого заключался бы в сжатии газа без изменения его внутренней энергии. На сжатиетела надо затратить работу чтобы внутренняя энергия тела не увеличилась, надо отнять от него эквивалентное количество тепла наконец, чтобы никаких изменений в окружающем мире не произошло,, надо было бы эту отнятую у газа теплоту некомпенсированно превратить в работу, что невозможно. Значит, расширение газа в пустоту необратимо. [c.73]

    Каждый вид энергии, как это следует и из (6) — (9), можно представить в виде произведения двух параметров (или факторов) — параметра (фактора) интенсивности и параметра (фактора) экстенсивности или емкости. Первый из них показывает уровень энергии, второй — ее количество, меру. При установлении равновесия между системами однотипные параметры интенсивности нивелируются, выравниваются, а однотипные параметры экстенсивности суммируются. Уровень нивелированных факторов интенсивности зависит при этом от соотношения соответствующих экстенсивных факторов в исходных, изолированных системах (до установления равновесия между ними). Пусть, например, в двух коленах и-образного сосуда, разделенного в его нижней части закрытым краном, находится одна и та же жидкость при одной и тон же температуре. В одном, более узком, например в левом, колене ее объем равен Уд и высота Йл этой высоте пропорционально давление Ря. В другом (правом), более широком колене эти величины равны соответственно Кш Лд и Рп, причем Рл>Рп. Если, открыть кран, то жидкость в обоих коленах сосуда установится на одном и том же уровне, а давления сделаются одинаковыми и равными некоторой величине Рр(Рп<Рр<Рл), объем системы Ур будет равен при этом сумме исходных объемов 1 р= У л-Н п. Очевидно, что смещение уровней (изменение давлений) в процессе установления равновесия от их первоначальных значений до конечного определяется соотношением объемов. Таким образом, в случае объемномеханической работы (энергии) давление Р — это фактор интенсивности, а объем V — фактор экстенсивности. Аналогично, температура Т представляет собой параметр интенсивности, а энтропия 5— параметр экстенсивности тепловой энергии (теплоты).. Внутренняя энергия и как функция энтропии и объема — факторов экстенсивности сама также является экстенсивным параметром внутренние энергии систем, приведенных в равновесие, суммируются. [c.12]

    Таким образом, величина i подобна pVT, а также и и характеризует состояние тела. В физическом смысле di есть элементарное количество тепла, сообщаемое телу при р = onst. Иными словами, энтальпию можно определить как количество тепла, которое нужно затратить для перехода тела, имеющего бесконечно малый объем, к данному состоянию при постоянном давлении. В связи с изменением можно сказать, что энтальпия есть та теплота, которая будет затрачена на увеличение внутренней энергии и соверщение работы в системе. [c.71]

    Первый закон термодинамики, который называется также законом эквивалентности теплоты и работы, является одним из частых случаев закона сохранения энергии и служит основой всех тепловых и энергегических расчетов. Этот закон формулируют следующим образом тепловая энергия не может ни исчезнуть бесследно, ни возникнуть вновь из ничего она мом<ет только перейти в строго эквивалентное количество энергии другого рода. При этом установлено, что если система поглощает извне или отдает в окружающее пространство тепло, то последнее расходуется только на изменение внутренней энергии данной системы и на совершение ею внешней работы (если таковая имеет место в данном процессе). Таким образом, если внутре1шяя энергия какой-либо системы (например, газа в сосуде и т. п.) после сообщения этой системе некоторого количества тепла (ЛQ) изменилась на Д(7, то, согласно первому закону термодинамики, имеем  [c.66]

    Из этого соотношения следует, что работа сил трения йА для выделенного элементарного объема системы превраш,ается в теплоту dQ, а кроме того, расходуется на увеличение внутренней энергии на химическое взаимодействие (%1с1п1г) и некоторые другие виды превращений. Указанные параметры тесно связаны между собой. Исходя из энергетической гипотезы, изнашивание (отделение) материала наступает тогда, когда внутренняя энергия 7 достигает критического значения. Однако в общем случае в присутствии химически активных компонентов износ определяется также глубиной химических превращений. В свою очередь, оба перечисленных фактора зависят от dQ. [c.250]

    В изохорпом процессе газ не совершает внешней работы, потому что пе изменяется его объем. Поэтому вся подведенная теплота идет на увеличение внутренней энергии газа. Из уравнения состояния идеального газа р-о=ЯТ следует, что [c.28]

    Данное рассуждение обосновывает 01И) тным путем наличие определенной функции состояния системы, имеющей смысл суммарной меры всех движений, которыми система oблaдaeт Предположим, что циклический процесс удалось провести так, что после того как система вернулась к исходному состоянию, внутренняя энергия системы не приняла начального значения, а увеличилась. В этом случае повторение круговых процессов вызвало бы накопление энергии в системе. Создалась бы возможность превращения этой энергии в работу и получения таким путем работы не за счет теплоты, а из ничего , так как в круговом процессе работа и теплота эквивалентны друг другу, что показано прямыми опытами. [c.31]


Смотреть страницы где упоминается термин Работа, теплота и внутренняя энерги: [c.90]    [c.55]    [c.63]    [c.30]    [c.21]    [c.21]    [c.23]    [c.28]    [c.248]   
Физическая химия Термодинамика (2004) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Внутренняя энергия, теплота и работа

Работа внутренняя

Работа и энергия

Энергия Работа и энергия

Энергия внутренняя

энергий теплота



© 2024 chem21.info Реклама на сайте