Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиарилаты физические

    Уменьшение плотности упаковки полимерных цепей из-за присутствия в исходных компонентах функциональных групп не в пара-, а в мета- или орто-положениях, наличие у двухатомных фенолов боковых заместителей способствуют образованию аморфных полиарилатов. Тенденция полиарилатов к кристаллизации также ослабляется с появлением у центрального углеродного атома бисфенола асимметричного заместителя [4, 11]. Как было показано на примере кардовых полиарилатов (см. главу 1), физическую структуру полимера в ряде случаев можно регулировать изменением как режима синтеза, так и условий последующей обработки полимера [15, 84, 85, 99, 146]. Это, несомненно, является важным моментом, так как позволяет изменять в желаемом направлении такое свойство полимера, как теплостойкость. Полиарилаты определенной структуры обладают и жидкокристаллическими свойствами [200-211]. [c.161]


    Полиарилаты — очень интересный новый класс полимеров, обладающих ценным комплексом физико-механических свойств высокой теплостойкостью, значительной прочностью при повышенных температурах, высокими диэлектрическими показателями и т. д. В книге изложены вопросы, посвященные определению прочностных и релаксационных свойств этих полимеров. Описанные методы определения характеристик механических свойств полиарилатов могут быть применены для любых других классов твердых полимеров. Подробно рассмотрено влияние условий синтеза полиарилатов на формирование надмолекулярной структуры и комплекса механических свойств, описаны принципы физической модификации полиарилатов. Отдельные разделы книги посвящены растворам полиарилатов, термическим и диэлектрическим свойствам этих полимеров. [c.2]

    Книга состоит из шести частей. В первой части кратко рассматриваются основные типы полиарилатов и методы их синтеза. Вторая часть посвящена структуре и механическим характеристикам этих полимеров третья —растворам, четвертая и пятая — термическим и диэлектрическим свойствам. В последней, шестой части, описано влияние физической модификации полиарилатов на их релаксационные и прочностные свойства. [c.6]

    В данной главе кратко описаны основные типы полиарилатов. Представляется уместным связать химическое строение отдельных типов полиарилатов с такими важнейшими показателями физических свойств, как температура размягчения и растворимость в органических растворителях, поскольку первый из этих показателей указывает на температурные области возможного применения полиарилатов, а второй — на способность образовывать пленки и волокна из растворов. Указанные свойства особенно ценны, так как вследствие высоких температур размягчения многих полиарилатов переработка их в изделия методами горячего прессования, экструзии и т. д. сильно затруднена. [c.16]

    При дальнейшем исследовании структурообразования в полимерах было со всей очевидностью показано, что надмолекулярные структуры оказывают существенное влияние на физические свойства полимеров. Для аморфных полимеров одним из первых исследований в этом направлении явилось изучение типов надмолекулярных структур в полиарилатах на основе фенолфталеина и его производных. [c.32]


    Аналогичные результаты были получены как для других типов жесткоцепных полиарилатов, так и для полиарилатов анилида фенолфталеина, полученных гомогенной поликонденсацией при повышенных температурах в различных растворяющих полимер средах. Таким образом, приведенные в этой главе данные подтверждают, что надмолекулярные структуры оказывают существенное влияние на свойства полимерного тела не только в кристаллическом, но и в стеклообразном состоянии. Одновременно можно сделать вывод, что при синтезе полимеров с жесткими макромолекулами необходимо учитывать влияние реакционной среды на отбор тех или иных конформаций макромолекул в процессе самого синтеза. Следовательно, комплекс механических свойств полимеров с жесткими макромолекулами можно регулировать не только путем химических изменений макромолекул, но и изменением физических условий взаимодействия растущей макромолекулы с окружающей средой. [c.40]

    Характеристика полимерных материалов с помощью областей работоспособности начинает находить все большее распространение при исследовании влияния химической и физической структуры полимера на его теплостойкость, антифрикционные свойства, пластификацию, а также при изучении вопросов, связанных с введением наполнителей для выявления возможных границ (по температуре и напряжению) применения стеклопластиков и т. д. Перед тем как непосредственно перейти к изложению результатов этих исследований, необходимо остановиться на одном важном обстоятельстве, характерном для теплостойких полиарилатов. Как уже было отмечено выше (стр. 54), такие полиарилаты имеют, по крайней мере, две области стеклообразного состояния (не считая перехода к хрупкости), в которых наблюдаются релаксационные процессы, протекающие по различным механизмам. При этом совсем не безразлично, в которой из этих температурных областей начинать эксперимент для определения области работоспособности полимера. [c.61]

    До сих пор излагались теоретические положения, связанные с особенностями проявления молекулярной релаксации в полиарилатах различного химического и физического строения, изученной диэлектрическим методом. Проведенные исследования показывают практически, что некоторые полиарилаты диана (главным образом, с ароматическими дикарбоновыми кислотами) являются хорошими диэлектриками и могут использоваться в качестве изоляционного материала при повышенных температурах. Это выгодно отличает их от многих других известных и широко применяемых на практике полимеров. Исследования, однако, не [c.187]

    ФИЗИЧЕСКАЯ МОДИФИКАЦИЯ ПОЛИАРИЛАТОВ [c.194]

    Физическая модификация полимеров, составленных из жестких макромолекул, имеет свои особенности, которые будут рассмотрены ниже. Поскольку эти полимеры могут иметь два типа надмолекулярной структуры (глобулярная и фибриллярная), свойства композиций на их основе зависят как от типа надмолекулярной структуры исходного полимера, так и от возможности формирования этой структуры в модифицированном полимере. Это необходимо учитывать при переработке модифицированных полиарилатов, а также в процессе их эксплуатации. [c.194]

    На теплостойкость и растворимость кардовых полиарилатов большое влияние оказывает и их физическая структура. Это, в частности, наглядно было установлено на примере политерефталата феиолантрона, структуру которого от аморфной до кристаллической, как оказалось, можно направленно изменять, варьируя условия синтеза или последующей обработки уже готового полимера [21, 51, 52]. Если аморфный полиарилат размягчается при 335-365 °С и растворим во многих органических растворителях, то по мере увеличения степени упорядоченности структуры данного полиарилата круг растворителей, растворящих его, сужается, а теплостойкость увеличивается. Кристаллический полимер растворяется только в смеси фенол-ТХЭ, но очень теплостоек не плавится до разложения. Таким образом, теплостойкость и растворимость кардовых полиарилатов можно направленно варьировать изменением их химического строения и физической структуры. [c.112]


Смотреть страницы где упоминается термин Полиарилаты физические: [c.266]    [c.59]    [c.49]    [c.50]    [c.51]    [c.62]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Полиарилаты



© 2025 chem21.info Реклама на сайте