Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы кристаллических полимеров

    В растворах кристаллических полимеров [526] выделение кристаллической фазы происходит не только в объеме, но и на поверхности частиц. Вследствие этого зародышеобразование на твердой поверхности сильно влияет на структурообразование. В растворах аморфных полимеров при микрорасслоении основную роль играют процессы смачивания частиц наполнителя полимером [525]. [c.265]


Рис. Ю.6. Диаграмма состояния растворов кристаллического полимера Рис. Ю.6. <a href="/info/72270">Диаграмма состояния растворов</a> кристаллического полимера
    Совсем недавно Флори провел важное теоретическое исследование, в котором показал существенное влияние гибкости макромолекул на свойства растворов кристаллических полимеров, исходя из представле- [c.26]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Плотность упаковки р структурных элементов в гидратцеллюлозе несколько меньше, чем в нативной. Целлюлоза представляет собой аморфно-кристаллический полимер. Она ограниченно набухает в воде в разбавленных растворах щелочей способна интенсивно набухать. Целлюлоза растворима в следующих растворителях  [c.291]

    В настоящее время обсуждается [91, 92, 100], имеют ли, и в какой степени, ламеллярные кристаллы и частично кристаллические полимеры ту же самую правильно сложенную структуру, как монокристаллы, выращенные из раствора. Используя [c.29]

    Стереорегулярный полипропилен (стр. 454) — кристаллически полимер с очень высокими физико-механическими показателями и хорошими диэлектрическими свойствами. Температура плавления полипропилена значительно выше, чем у полиэтилена 164—170° С, а молекулярная масса 60000—200 000. Полипропилен кислото-и маслостоек даже при повышенных температурах. При обычной температуре он не растворяется ни в одном растворителе, при 80° С растворяется в ароматических углеводородах и хлорированных парафинах. Благодаря исключительным свойствам полипропилен — весьма перспективный полимер. Имеются указания о том, что синтетическое волокно из полипропилена по прочности превосходит все известные природные и синтетические волокна. [c.469]


    Согласно принятой модели изменение энтропии при образовании раствора обусловлено исключительно изменением числа способов распределения частиц по узлам. Для определения энтропии смешения из выражения (XIV. 117) следует вычесть аналогичные вклады в энтропию чистых веществ. Для чистого растворителя этот вклад нулевой (И 1) для полимера он может быть различным в зависимости от того, находится полимер в кристаллическом, полностью упорядоченном состоянии (цепи строго ориентированы в решетке) или в аморфном, неупорядоченном. Для кристаллического полимера [c.428]

    Сетчатые полимеры резко отличаются по свойствам от линейных и разветвленных полимеров. Они не плавятся без разложения и не могут быть переведены в раствор, они только набухают в растворителях. Это связано с тем, что в сетчатых полимерах преобладают прочные химические связи между макромолекулами. Физические и физико-механические свойства этих полимеров зависят от числа межмолекулярных химических связей и от регулярности их расположения. С увеличением числа межмолекулярных связей твердость вещества увеличивается, повышается модуль упругости и уменьшается относительная деформация, т. е. свойства сетчатого (пространственного) полимера приближаются к свойствам кристалла (примером кристаллического полимера с правильной пространственной решеткой является алмаз). [c.48]

    При обычной температуре он не растворим в распространенных растворителях, его пленки менее проницаемы для органических веществ, чем полиэтиленовые пленки. Свойства полиформальдегида заметно не изменяются в условиях длительного прогревания при 80° и кратковременного при 120° или при длительном выдерживании в воде при 60°. Концентрированные растворы кислот и щелочей разрушают полимер. Плавится кристаллический полимер около 175°, выше 184° он переходит в текучее состояние. В настоящее время полиформальдегид выпускают под названием делрин. Этот полимер легко перерабатывается в изделия методом прессования, шприцевания и литья под давлением при 200—225°. Он удачно сочетает в себе новышенную механическую прочность с хорошими диэлектрическими свойствами. [c.828]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]

    Полученный полимер — продукт слегка желтоватого цвета, опалесцирующий, твердый кристаллизуется при отжиге при 130° в течение 30 мин. Температура плавления кристаллического полимера (определена на нагревательном столике поляризационного микроскопа) порядка 267°. Из расплава можно вытянуть желтоватые блестящие волокна, которые обнаруживают типичные эффекты холодной вытяжки. Характеристическая вязкость раствора в смеси (60 40) фенола и тетрахлорэтана равна 0,1—0,3. [c.108]

    М2. Иванов А.И. Термохимия растворов частично кристаллических полимеров Дис.... д-ра хим. наук. Барнаул, 1996. 290 с. [c.397]

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Как правило, функциональные группы в цепях поливинилацеталей распределены неравномерно. Внутримолекулярная неоднородность полимеров зависит прежде всего от условий ацеталирования ПВС. Более равномерно функциональные группы распределены в поливинилацеталях, полученных в гомогенных средах [ 32]. Наибольшая композиционная неоднородность характерна для продуктов ацеталирования твердого ПВС. Так, при взаимодействии формальдегида с поливинилспиртовым волокном реакция ацеталирования протекает только в аморфных областях, не затрагивая кристаллических [14, с. 394]. При ацеталировании ПВС в растворе кристаллическая фаза полностью исчезает. при определенной степени замещения гидроксильных групп, за- [c.136]

    В большинстве случаев реакции целлюлозы протекают гетерогенно (гетерогенные процессы), т.е. в двух фазах твердая целлюлоза реагирует с жидким или газообразным реагентом или с раствором реагента. Гетерогенные процессы у целлюлозы отличаются от гетерогенных реакций низкомолекулярных соединений. На характер гетерогенных процессов у целлюлозы влияет физическая структура - надмолекулярная структура, межмолекулярное взаимодействие, релаксационное состояние. У целлюлозы это свойство полимеров проявляется особенно ярко. В структуре целлюлозы как аморфно-кристаллического полимера имеются и аморфные и кристаллические области, обладающие различной доступно- [c.547]

    Рассмотрим последовательно данные об электрической релаксации в растворах полимеров, аморфных и кристаллических полимерах. [c.238]

    Большая вязкость расплавов и растворов кристаллических полимеров и замедленность в них релаксационных процессов создают условия для образования сферолитных структур. Сферолиты размером 4 мм были получены, например, для полиэтиленсебаци-ната (ПЭС). Присутствие крупных сферолитов в пленке приводит к ее помутнению из-за появления оптической неоднородности. Дефектность полимеров, имеющих крупные сферолиты, проявляется наиболее отчетливо. Разрушение их сопровождается образованием трещин по границам и внутри сферолитов. В процессе структурообразования могут быть получены два типа сферолитов радиальный и кольцевой). Радиальные сферолиты образуются при быстрой кристаллизации, а кольцевые — при медленной (протекающей при более высоких температурах). [c.22]

    Из растворов кристаллических полимеров в плохом растворителе [30], а также из расплава при медленной кристаллизации были получены эдриты, которые занимают промежуточное по сложности положение между единичными кристаллами и сферолитами, которые образуются при кристаллизации полимеров из расплава. При достаточной скорости кристаллизации образуются сферолиты (рис. 37,3). Зародышем каждого сферолита является [c.509]

    Если раствор кристаллического полимера рйзделяется на две фазы, то это могут быть или два жидких слоя, или одна из фаз может представлять собой набухшую частично кристаллическую массу. [c.324]

    Увеличение кристалличности полимера способствует уменьшению взаимодействия с растворителем, что объясняется большим межмолекулярным взаимодействием. Кристаллические полимеры не растворяются даже в жидкостях, близ1сих по полярности. [c.319]

    Кристаллические полимеры легко подвергаются ориентации при растяжеггии. Рентгенограмма ориентированного полимера показывает, что с повышением степени кристалличности такой полимер становится прочнее и тверже. Стереорегулярпые полимеры простых виниловых эфиров менее растворимы по сравнению е аморфными. Они нерастворимы в бута ноле и метилвинилкетоне. тогда как аморфные полимеры растворяются в этих жидкостях. [c.296]

    Концентрация расслаивания Ср тем выше, чем ближе полимеры по химической природе. Если различие в химической природе велико, то расслаивание может произойти и при концентрациях менее 1%. В то же время сильное различие по химической природе, обусловленное наличием полярных функциональных групп, может, наоборот, привести к образованию нерасслаиваюшихся смесей. Близкие по природе полимеры могут иметь столь близкие физические константы, что микрорасслаивание в растворе не переходит в макрорасслаивание и можно прийти к ошибочному выводу об однофазности смеси. Это согласуется с трудностью или даже с невозможностью образования совместных кристаллов в смеси кристаллических полимеров. Предполагается, что требования к максимально плотной упаковке особенно высоки для полимеров, склонных к образованию надмолекулярных структур в аморфном состоянии и в растворах. Поэтому при оценке совместимости и объяснении механизма расслаивания полимерных смесей,помимо энергетического фактора,особое значение приобретает разнозвенность макромолекул ВМС (структурный фактор). Каждая макромо- [c.76]

    Следует отметить, что даже для тщательно обеспыленных полимерных систем наиболее типично гетерогенное зарождение кристаллизации. В расплаве или растворе полимера в определенном интервале температур всегда присутствуют агрегаты макромолекул, характеризующиеся достаточно большими временами жизни. Они и выполняют роль гетерогенных зародышей. Кристаллизация на гетерогенных зародышах начинается уже при небольших переохлаждениях системы и характеризуется относительно короткими периодами индукции. Скорость гетерогенного зародышеобразова-ния в значительной степени зависит от температурной предыстории системы. Если кристаллический полимер с определенной надмолекулярной структурой многократно расплавлять и расплав нагревать до одной и той же температуры, не слишком превышающей Тпл, то при последующем его охлаждении и кристаллизации исходная морфологическая картина каждый раз в точности повторяется. Эта память расплава объясняется тем, что кристаллизация каждый раз начинается на одних и тех же зародышах, которые в условиях опыта не разрушаются и вследствие высокой вязкости расплава за время опыта даже не успевают существенно переместиться в пространстве. Однако если тот же расплав сильно перегреть, то гетерогенные зародыши разрушаются и последующая кристаллизация уже характеризуется гомогенным зарождением. Она начинается при относительно больших переохлаждениях системы и характеризуется большими индукционными периодами по сравнению с таковыми при кристаллизации на гетерогенных зародышах. Гомогенный зародыш, по всей вероятности, представляет собой одну макромолекулу, принявшую в результате флуктуации кристаллоподобную складчатую конформацию. [c.188]

    Характерной чертой полимеров является возникновение сферо-литов. Сферолит — это кристаллическое образование округлой формы. В расплаве размер его может достигать сотен микрон. Из растворов некоторых полимеров получают сферолиты диаметром до 1 см. Сферолит построен из ламелей, растуш,их из единого центра, от одного зародыша кристаллизации (рис. 12.4, а). Ламели и в [c.175]

    Кристаллическая структура полимера. Кристаллические полимеры растворяются значительно хуже, чем аморфные. Это объясняется наличием большого межмолекулярного взаимодействия глава VI). В этом с,пучае для отрыва цепей друг от друга необходимо одновременно нарушить большое число связей, что требует значительной затраты энергии, Поэтому при комнатных температурах кристаллические полимеры, как правило, не растворяются даже в жидкостях, сходных по полярпости. Папример, при 20 С полиэтилен ограниченно набухает в к-гексаяе и растворяется в нем только при нагревании изотактический кристаллический полистирол не растворяется при комнатной температуре в растворителях, пригодных Для атактического полистирола—-для растворения его также необходимо нагреть, Политетрафторэтилен не растворяется ни в одном иэ известных растворителей пи при каких температурах. [c.324]

    В Предыдущих главах было показано, что механические и электрические свойства полимеров в сильной степени зависят от их строения, фазового и физического состояния. Эти же факторЫ влияют и на термодинамические свойства растворов полимеров. Поэтому целесообразно рассмотреть термодинамические закономерности процесса растворепия высокоэластических, стеклообразных и кристаллических полимеров. [c.366]

    Полярные кристаллические полимеры растворяются только в растворителях, энергия йзаимодсйствия с которыми превышает энергию взаимодействия между пенями ( 2> 2)- Поэтому Следует ожидать экзотермического растворепия полярных кристаллических полимеров папримср, полиамидные волокна, [c.371]

    Кристаллические полимеры обладают способностью при комнатных температурах сорбировать пары жидкостей, в которых при нагревании они растворяются. Так, лиамиды сорбируют в значительном количестве пары муравьиной кислоты, полиэтилен сорбирует пары я-гексапа и т. Д- [c.498]

    Полиэтилен — кристаллический полимер снежнобелого цвета с температурой плавления от 110 до 135° С в зависимости от марки. Свойства полиэтилена в значительной степени зависят, как и у всех кристаллических полимеров, от содержания аморфного вещества. Полиэтилен легко загорается и горит коптящим пламенем. При комнатной температуре ни в чем не растворяется. Обладает низкой поверхностной энергией и, как следствие, низкой адгезпонной способностью. Для повышения адгезионной способности рекомендуется обработка поверхности хромовой смесью при 75° С в течение 5 мин. Применяется в виде литых изделий, волокон, пленок, труб, листов, каиистр и флаконов. По свойствам и методам получения к полиэтилену очень близок весьма перспективный полимер — полипропилен. [c.274]

    Продукт выделяют, выливая очень вязкий раствор в изопропиловый спирт ири энергичном перемешивании в высокоскоростном смесителе После выделения полнмер сушат нагреванием в токе перегретого пара в течение часа. Выход примерно 24 г, логарифмическая приведенная вязкость 3—4 (0,1%-ный раствор в лекалиие при 130 ). Полнмер может быть отпрессован в прозрачные очень жесткие пленки при 200°. Полосы пленки ориентируются при вытягивании над нагретой поверхностью (125 ). Ориентированный кристаллический полимер имеет температуру плавлення кристаллитов 160 . [c.255]

    По мере повышения степени хлорирования уменьшается содержание кристаллической фракции в полимере. Вследствие деструкции вязкость растворов хлорированных полимеров пропилена снижается прямо пропорционально содержанию хлора. Температура размягчения, как и в случае полиэтилена [79], сначала падает, а затем линейно повышается, причем постепенно возрастает плотность хлорированного полипропилена (рис. 6.4). Подобно всем хлорированным полимерам хлорированный полипропилен легко отщепляет газообразный хлористый водород так, полипропилен с содержанием хлора 607о отщепляет его уже при 108—123°С. [c.134]

    Действительно, хорошо известно, что кристаллический полимер растворяется гораздо хуже, чем аморфный полимер того же химтеского строеим. Ориентированные образцы также хуже растворяются по сравнению с изотропными образцами. Возлюжно, что и в сл5 чае изотропных образцов аморфных полимеров надмолекулярная структура может быть разли шой, однако этот вопрос до сих пор является предметом дискуссии. На международной конференции в Лондоне в 1979 г были представлены экспериментальные и теоретические данные об отсутствии нодульной структуры в аморфных полимерах, причем данные электронно-микроскопических исследований поверхности пленок и сюлов были причислены к артефактам [142]. Трудно, однако, представить, что если поверхность пленки, полученной из раствора, и поверхность скола блочного образца, полученного из расплава, дают одн] и ту же электронно-микроскопическую картину глобул, то эта картина является следствием артефактов. [c.333]

    На теплостойкость и растворимость кардовых полиарилатов большое влияние оказывает и их физическая структура. Это, в частности, наглядно было установлено на примере политерефталата феиолантрона, структуру которого от аморфной до кристаллической, как оказалось, можно направленно изменять, варьируя условия синтеза или последующей обработки уже готового полимера [21, 51, 52]. Если аморфный полиарилат размягчается при 335-365 °С и растворим во многих органических растворителях, то по мере увеличения степени упорядоченности структуры данного полиарилата круг растворителей, растворящих его, сужается, а теплостойкость увеличивается. Кристаллический полимер растворяется только в смеси фенол-ТХЭ, но очень теплостоек не плавится до разложения. Таким образом, теплостойкость и растворимость кардовых полиарилатов можно направленно варьировать изменением их химического строения и физической структуры. [c.112]

    Аморфные полгшеры в виде пленок или достаточно больших пластинок могут быть исследованы на обычных рефрактометрах. Для определения молекулярной рефракции кристаллических полимеров и органических веществ измеряют показатели преломления и плотности их растворов точно известной концентрации, а затем вычисляют рефракцию растворенного вещества по правилу аддитивности [c.202]

    Существуют синтетические и природные кристаллические полимеры. Полимеры могут кристаллизоваться в ходе синтеза, из расплавов при их охлаждении, из растворов, а также при растяжении высокоупорядоченных фибриллярных аморфных полимеров. При этом могут образоваться разнообразные элементы надмолекулярной структуры в зависимости от природы полимера и условий кристаллизации. При кристаллизации из растворов получают пластинчатые монокристаллы, а из расплавов -блочные полимеры микрокристаллического строения. В природе часто синтезируются фибриллярные криста.1лические полимеры, например, целлюлоза Фибриллярные аморфные полимеры, способные кристаллизоваться при растяжении, называют кри- [c.137]

    Целлюлоза как полярный аморфно-кристаллический полимер растворяется только в высокополярных растворителях, причем даже вступает с ними в химическое взаимодействие. Растворение начинается с процесса набухания, т.е. с проникновения растворителя в целлюлозу. При этом происходит сольватация (в частности, гидратация) с характерными для процесса набухания полимеров особенностями (см. 7.1). У целлюлозы как аморфно-кристаллического полимера существуют два вида ограниченного набухания - межкристаллитное и впутрикристаллитное. Когда растворитель способен преодолеть в целлюлозе все силы межмолекулярного взаимодействия, происходит неограниченное набухание, переходящее в растворение. Разделение на отдельные макромолекулы достигается только в очень разбавленных растворах - при концентрации [c.554]


Смотреть страницы где упоминается термин Растворы кристаллических полимеров: [c.321]    [c.62]    [c.77]    [c.55]    [c.46]    [c.126]    [c.111]    [c.134]    [c.335]    [c.43]    [c.41]    [c.40]    [c.178]    [c.112]   
Волокна из синтетических полимеров (1957) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы полимеров



© 2025 chem21.info Реклама на сайте