Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели молекулярные построение

    Вариационный метод дает возможность приблизительного определения энергии системы, но для этого необходимо подобрать правильную волновую функцию, что не всегда легко сделать. Для вычисления энергии молекулярных уровней существуют два метода, основанных либо на теории молекулярных орбиталей, либо на теории валентных связей. Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а также отражают разные представления об основной модели строения молекулы. [c.144]


    С особенностями жидкого состояния (большая плотность, сильные молекулярные взаимодействия и одновременно отсутствие правильной структуры) связаны трудности построения статистической теории жидкостей. Для газов и кристаллов имеются простые модели, соответствующие предельным случаям идеального газа и идеального кристалла. Идеальный газ, или совокупность практически невзаимодействующих частиц, соответствует бесконечно малой плотности системы и полной неупорядоченности в распределении частиц. Идеальный кристалл — система с большой плотностью и полностью упорядоченной периодической структурой. Обе модели сравнительно легко описываются статистически. Теория реальных газов и реальных кристаллов состоит в разработке методов, позволяющих оценить отклонения свойств реальных систем от свойств идеальных моделей, исходя из конкретных особенностей межмолекулярных взаимодействий в системе. Для жидкости, в силу отмеченных выше особенностей, не существует общей сравнительно простой и в то же время достаточно оправданной модели, на основе которой можно было бы строить теорию. Свойства жидкостей в значительной степени более индивидуальны, чем свойства газов и твердых тел. [c.356]

    Процесс моделирования вообще и роль моделей в химии обсуждались в основополагающей книге [П] и не будут обсуждаться вновь, за исключением тех случаев, когда это будет необходимо. Построение концептуальной модели молекулярной сложности само по себе является сложной проблемой, и она должна быть разбита на части проблемы дизайна или же иные часто оказываются слишком сложными, чтобы решить их целиком, и необходимо разбить их на компоненты, которые, хотя и взаимосвязаны, являются все же квазинезависимыми и с целью моделирования могут рассматриваться как таковые [И, с. 46]. Ряд авторов [12—14] перечисляют либо в явной, либо в неявной форме характерные черты, составляющие молекулярную сложность они представлены совместно на рис. 1, где построена их иерархия. [c.237]

    Первый способ, впервые примененный при составлении уравнений состояния жидкостей основан на постулировании некоторой модели молекулярного строения аморфной части. При построении этой модели предполагается, что существует ближний порядок и взаимодействующие части молекул (мономерные единицы) расположены в узлах квазикристаллической решетки. Далее рассчитывается энергия взаимодействия в выбранной решетке и (при помощи дополнительного предположения относительно взаимного расположения цепей) сумма состояний ансамбля подобных решеток. Величина давления рассчитывается по известной формуле статистической термодинамики  [c.46]


    Название данного раздела соответствует очень эффективной модели простой поверхности ослабления , предложенной Смитом [41]. Эта модель опирается на рассмотрение вязкоупругого поведения сплошных полимерных тел, т. е. на представление, которое должно сводиться согласно принципу температурно-временной суперпозиции внешних параметров нагружения-напряжения, скорости деформации и температуры к соответствующим молекулярным состояниям. Если критерий разрушения действительно имеет единые пределы молекулярной работоспособности, то построенные кривые приведенного напряжения Б зависимости от деформации при разрушении в различных экспериментальных условиях должны ложиться на одну обобщающую кривую (рис. 3.6). Эта концепция справедлива применительно к большому числу натуральных и синтетических каучуков и вулканизатов при однотипных механических йены- [c.73]

    Для многокомпонентных атомно-молекулярных сред электронная кинетика сложна и не может описываться универсальной моделью. При построении частных моделей обычно выделяются метастабильные электронные состояния частиц среды и для их заселенностей записываются уравнения баланса. Детально развиты модели бинарных систем, содержащих два химических элемента, причем особое внимание уделяется моделям, основанным на смешении простых одноэлементных сред. Процессы смешения играют роль регулятора кинетики, в частности дают возможность для запасания энергии в определенных состояниях, что благоприятно для создания лазерных сред. [c.128]

    Изложенная схема расчета интеграла состояний системы не содержит ограничений на природу и величину потенциальной энергии межчастичного взаимодействия. Это позволяет определить аксиоматику построения математической модели состояния равновесной системы. Равновесный состав должен удовлетворять 1) уравнениям ЗДМ, описывающим образование молекулярных форм, приводящих к эффективному уменьшению экстремума свободной энергии Гиббса [5] 2) максимальному числу линейно-независимых стехиометрических уравнений закона сохранения вещества и заряда 3) уравнению связи измеряемого свойства системы с равновесными и исходными концентрациями составляющих частиц. Термодинамика не дает априорных оценок предельных концентраций компонентов системы, допускающих указанные приближения структуры жидкости. Состоятельным критерием возможности применения модели идеального раствора для комплексов, по-видимому, может служить постоянство констант химических равновесий при изменении концентраций компонентов системы, если число констант, необходимых для адекватного описания эксперимента, не превышает разумные пределы. [c.18]

    В последних работах М. X. Кишиневский использует основные количественные выводы модели проницания дав ей, однако, обоснование как модели кратковременного контакта фаз . Основой для построения такой модели считаются допущения о ламинарности движения жидкости на всем протяжении контакта, о независимости ее скорости от поперечной движению потока координаты и о кратковременности контакта фаз. Последнее допущение автор считает по существу основным, так как обоснованность первых двух часто вытекает именно из правомерности третьего при кратковременном контакте фронт диффундирующих с поверхности молекул газа успевает продвинуться на столь малое расстояние, что коэффициент турбулентной диффузии все еще остается меньше коэффициента молекулярной диффузии. На этом основании, по Кишиневскому можно пренебречь турбулентной диффузией и рассматривать движение вблизи свободной поверхности как ламинарное, не учитывая к тому же реальный профиль скоростей. [c.106]

    В данной главе, первой из трех, где излагаются модели ковалентной связи, студенты получают представления о типах связи, порядке связи, о делокализованных связях и молекулярной геометрии на основе описательного, нематематического подхода. Такой подход имеет самостоятельную ценность как средство описания большого числа молекул кроме того, ясное понимание его достоинств и ограничений дает основание для построения более сложных моделей в следующих главах. Эту главу рекомендуется подробно пройти в любых курсах. [c.575]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]


    Метод построения математической модели псевдоожиженного слоя, который будет изложен ниже, интересен тем, что позволяет проследить переход от нижнего (атомарно-молекулярного) уровня иерархической структуры эффектов ФХС до ее верхнего уровня. Важной составной частью стратегии этого перехода будет служить процедура оценки отдельных членов уравнений и выявление мини- [c.160]

    Для заданного набора компонентов а-р Хо формируется совокупность элементов структуры модели — наиболее вероятных молекулярных форм х ,. . Построение адекватной модели осуществляется от начальной минимальной совокупности равновесий последовательным усложнением структуры модели путем включения в нее только элементов, вносящих значимый вклад в выбранную меру качества моде- [c.18]

    К середине ноября, когда состоялся доклад Рози о ее работе над ДНК, я уже настолько разбирался в кристаллографии, что понимал почти все. А главное — я знал, на что следует обращать особое внимание. Выслушивая в течение шести недель рассуждения Фрэнсиса, я понял вся соль в том, подтвердят ли новые рентгенограммы, полученные Рози, спиральную структуру ДНК. И важны были лишь те подробности, которые могли оказаться полезными для построения молекулярных моделей. Однако уже через несколько минут стало ясно, что Рози избрала совершенно другой путь. [c.46]

    Какие же инструменты нужны для проведения исследований с помощью биоорганических моделей Подходы, принятые в органической и физической органической химии, уже сами по себе обеспечивают наилучшие возможности построения моделей, т. е. моделирования молекулярных событий, которые составляют основу жизнедеятельности. Весьма значительное направление классической органической химии посвящено природным соединениям. Химия природных соединений дала очень много сведений, оказавшихся полезными при обнаружении и описании специфических молекулярных процессов в живых системах. Достаточно вспомнить, например, об антибиотиках, некоторых алкалоидах, [c.14]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Однако, решив задачу механики, мы еще не решим термодинамическую проблему. Найденное решение позволит определить импульсы и координаты частиц в любой момент времени на основании данных о начальных координатах и импульсах. Однако, имея подобный набор величин, мы окажемся в большом затруднении при сопоставлении теории с опытными данными. Это объясняется качественным отличием параметров, входящих в молекулярную и в макроскопическую теорию. Например, температура и энтропия вообще не используются при динамическом описании свойств системы. Более того, для макроскопических систем, построенных из огромного числа частиц, нас совсем не интересуют первичные данные молекулярной механики от импульсах и координатах частиц, а требуются только сведения о некоторых усредненных параметрах системы или их средних отклонениях (флуктуациях). Это связано с тем, что в макроскопическом эксперименте все системы ведут себя в среднем одинаково, хотя расположение отдельных молекул и их скорости непрерывно изменяются. Поэтому для сопоставления теории с опытом решение определенной задачи механики требуется усреднить по времени и по всем начальным конфигурациям системы. В аналитической механике такая задача вообще не имеет решения, если число частиц больше или равно трем. Макроскопические системы содержат неизмеримо большее число частиц. Тем не менее решение подобной задачи, долгое время казавшееся чисто символической операцией, в настоящее время стало привлекать большое внимание. Развитие вычислительной математики позволило численно проинтегрировать уравнения механики для достаточно большого числа частиц, когда совокупность молекул уже можно рассматривать как малую часть макроскопической системы. В ряде случаев систему моделируют путем периодического повторения специально подбираемого блока молекул. Определяемые для этой модели средние значения, конечно, не являются точными аналогами измеряемых на опыте вели- [c.187]

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]

    Построению моделей поведения стекломассы, учитывающих тепловые и гидродинамические процессы, посвящено много исследований [16, 19, 24, 35, 38—40]. Механизм передачи тепла в расплаве стекла обусловлен излучением, конвекцией и молекулярной теплопроводностью. Для описания этих явлений чаще всего используют уравнение теплопроводности, в котором вместо коэффициента теплопроводности применяют эффективный коэффициент. Последний определяется радиационной проводимостью и коэффициентом молекулярной теплопроводности, зависящими от температуры [1, 36, 37]. В связи с тем что методы экспериментального изучения распределения температур в стекломассе существующими техническими средствами не позволяют получать достаточно полной картины, для задания граничных условий принимаются дополнительные предположения, в ряде случаев не приводимые авторами. Это особенно относится к области, покрытой шихтой и варочной пеной, где в связи с высокими температурами и агрессивностью среды измерения, как правило, не проводят. При задании граничных условий исследователи используют качественные сведения о характере процесса варки стекла. [c.128]

    Удобно определить молекулярный граф связей как конструкцию, состоящую из точек (ядер) и ребер (связей), в которой разные типы ядер (например, кислорода и углерода) определяют разнотипные точки, а различные типы связей (например, простые и двойные связи) — различающиеся ребра. Хотя в некоторых случаях решение относительно связности (т. е. связаны ли два атома или нет) до некоторой степени произвольно, в общем построение молекулярного графа связей (или модели), соответствующего данной химической структуре, осуществляется непосредственно. При последующем обсуждении термин химическая структура используется для обозначения реально существующего соединения и его молекулярного графа связей. Геометрические свойства таких конструкций являются ключевыми для нашего понимания структуры и реакционной способности. [c.29]

    Основной вопрос, связанный со всеми этими исследованиями, состоит в обосновании использования полиэдров, на которые могут быть отображены молекулярные структуры. Хотя интуитивно кажется логичным построение моделей, в которых ядра соответствуют вершинам полиэдра и электронная плотность сконцентрирована на гранях, вдоль ребер полиэдра или некоторым смешанным образом, более строгая квантовомеханическая трактовка такого подхода, по-видимому, все еще отсутствует. [c.161]

    При рассмотрении систематического построения синтеза Хендриксон [13] строил граф синтеза, в котором вершины представляли молекулы (исходные вещества, требуемый продукт и интермедиаты), а линии — реакции, превращающие одну молекулу в другую. Углерод располагался внизу графа, молекула искомого продукта — вверху, а вдоль левой стороны — вертикальная стрелка, помеченная молекулярная сложность . Наша модель дает масштаб для таких осей. [c.251]

    Здесь под свойством растворенного вещества подразумеваются -факторы, связанные только со структурой и стереохимией его молекулы, а параметр растворителя пропорционален концентрации бензольных колец в среде [279]. Основываясь на этих данных, Ласло и др. предложили модель кластера, построенного из молекул растворенного вещества и растворителя, которая и была положена в основу большинства теоретических описаний эффекта ИАРС [279]. В модели Ласло принимается, что эф- фект ИАРС обусловлен частичной ориентацией молекул ароматического растворителя вокруг биполярного центра молекулы растворенного вещества, причем эта ориентация обусловлена слабыми межмолекулярными взаимодействиями между молекулярными диполями растворенного вещества и молекулярными квадруполями растворителя [413]. Время жизни таких неустойчивых комплексов в шкале времени типичного эксперимента 51МР должно быть очень малым, и регистрируемый спектр ЯМР будет представлять собой усредненный спектр всех разнообразных комплексов. Точная стехиометрия и стереохимия этих нестабильных комплексов неизвестны, но в них, по-видимому, молекулы бензола обращены своей плоскостью к положительному концу молекулярного диполя растворенного вещества. Именно [c.480]

    Молекулярные модели. Молекулярно-кинетические теории полимерных систем основаны, в сущности, на анализе поведения тех же самых механических моделей и их комбинаций, которые используются при построении рассмотренных выше феноменологи- ческих моделей. Поэтому основные результаты, получаемые при обоих подходах, практически совпадают. Основное различие между молекулярными и феноменологическими теориями состоит в том, что те константы реологических уравнений, которые при чисто феноменологическом подходе выступают как эмпирические постоянные, в молекулярных моделях связываются с характеристиками полимерных цепей — их длиной, жесткостью и т. п. [c.308]

    Вплоть до конца 30-х годов принципиальное различие законов построения ионного и молекулярного кристаллов оставалось неясным для большинства исследователей. Лишь в конце 30-х годов начал входить в обиход термин ван-дер-ваальсов радиус . Было признано, что правильное представление о форме молекулы можно получить только при использовании двух радиусов — атомного и межмолекулярного. Появились даже модели молекул, построенные в общих чертах по принципам, которые были сформулированы в главе I (стр. 23). [c.83]

    Открытие двойной спирали было одним из наиболее волнующих событий в молекулярной биологии. Две группы фактов легли в основу модели ДНК, построенной Уотсоном и Криком (Watson, ri k) в 1953 г. [c.26]

    Для предсказания конформации белков и для многих других целей полезно иметь возможность быстро конструировать молекулярные модели белковой структуры. Ясно, что использовать молекулярные модели для построения вручную большого многообразия структур совершенно невозможно. Левинталь и др. (1966 г.) предложили новый, очень остроумный подход к решению этой проблемы, в котором они использовали для построения моделей ЭВМ. Таким методом можно быстро построить молекулярную модель по данным об углах поворота остова молекулы и вьшести получившуюся структуру на экран дисплея. Хотя при этом мы видим только двумерную картину, пространственное представление о структуре можно получить, поворачивая модель вокруг какой-нибудь из осей. На рис. 5.21 показаны типичные выведенные на экран дисплея проекции кристаллической структуры миоглобина. Большое впечатление производят наглядность и ясность этих картин. Таким образом, в поисках предпочтительной конформации исследователь может быстро сконструировать и зрительно проанализировать большое количество структур. [c.283]

    В работе [382] при построении модели принимались во внимание молекулярная диффузия внутри отдельных капель. Предполагалось, что все кахши движутся вертикально вниз вместе с потоками газа (у=1,5— 2,0 м/с), т. е относительную скорость капель полагали равной нулю, так что значение критерия Шервуда было принято равным 2. Авторы получили решение поставленной задачи, аппроксимируя распределение капель по размерам нормально-логарифмическим законом. В промышленных скрубберах скорость капель существенно отличается от скорости потока 252 [c.252]

    В соответствии с этим выделяются и уровни экспериментальных исследований, выполняемых интегрированной или распределенной АСНИ. Так, при исследовании каталитического реактора стратегия выделения уровней исследования (и соответственно проведения экспериментов) приведена на рис. 3.4. [61. Всего выделяется шесть уровней иерархии элементы ХТС, аппаратов, слоя катализатора, зерна катализатора, поверхности зерна катализатора и молекулярный уровень. Эта структура является типичной при построении математических моделей процессов химической технологии. [c.60]

    Свободная модель активированного комплекса, полученная путем решения обратной кинетической задачи, позволяет найти Л-фак-торы обратимой реакции рекомбинации алкильных радикалов Построение такой модели активированного комплекса проще всего проследить на примере диссоциации этана на два -СНз-радикала. Согласно принципу микроскопической обратимости, такую же модель активировмного комплекса следует принять при исследовании кинетики реакции (6.8). Рассмотрим основные этапы решения обратной кинетической задачи и определим молекулярные свойства активированного комплекса. [c.91]

    Теперь, когда спиральная структура ВТМ была у меня в кармане, я полагал, что сейчас-то Дельбрюк безоговорочно одобрит мою приверженность к Кембриджу. Но наш короткий разговор показал, что его точка зрения не изменилась. На мой рассказ о строении ВТМ он ответил почти полным молчанием. С тем же равнодушием он выслушал и мой торопливый отчет о наших попытках подобраться к ДНК путем построения молекулярных моделей. Заинтересовало его только мое утверждение, что Фрэнсис необыкновенно умен. К несчастью, дальше я упомянул о сходстве его манеры мыслить с манерой Полинга. Но в том мире, где жил Дельбрюк, химическая мысль не могла тягаться с могуществом генетического перекреста. В тот же вечер, когда генетик Борис Эфрусси заговорил о моем романе с Кембриджем, Дельбрюк только брезгливо махнул рукой. [c.78]

    Фрэнсис Крик устроен совсем иначе. Профессионал в структурном анализе, он был уверен в верности их с Уотсоном работы. Кроме того, как ни важна структура ДНК, его интересовали и другие проблемы молекулярной биологии. Отсюда разные пути этих людей в дальнейшем. Крик продолжал плодотворно работать гипотеза о существовании особой РНК, перекодирующей нуклеотидные последовательности в белковые доказательство в изящном эксперименте триплетности генетического кода построение молекулярной модели изломов в ДНК... [c.132]

    Настоящая книга — это учебное пособие. В наши намерения не входило дать полный обзор по всем проблемам биоорганической химии. Мы считали правильным выделить наиболее важные моменты, подчеркивающие принципы построения органических молекулярных моделей, и более подробно остановиться лищь на некоторых общих и частных вопросах. По своему содержанию книга доступна студентам старших курсов и не требует обращения к элементарному учебнику биохимии разумеется, студент должен иметь хороший багаж практических знаний по органической химии. Следовательно, эта книга как учебник адресована в первую очередь студентам последних курсов, специализирующимся в области химии, биохимии, биологии и фармакологии кроме того в ней содержатся современные достижения, которые так необходимы студентам-выпускникам, в действительности нередко совершенно с ними не знакомым. [c.10]

    Термодинамическое исследование системы с поверхностями раздела фаз встречает свои трудности. Эти трудности связаны с неопределенностью толщины адсорбционного слоя, т. е. примыкающей к поверхности неоднородной части объемной фазы. Даже в случае инертного адсорбента это относится к примыкающей к его поверхности неоднородной части флюида —газа или жидкости. Действительно, такая важная характеристика этого слоя, как его толщина, остается неопределенной она может зависеть от степени заполнения поверхности раздела молекулами адсорбата, ориентации этих молекул и ее зависимости от заполнения, перехода от MOHO- к полимолекулярному слою, других факторов, связанных со структурой адсорбента и молекул адсорбата (или молекул смеси адсорбатов), и от температуры. Это затруднение требует построения молекулярной модели адсорбционного слоя, например модели мономолекулярного слоя постоянной толщины, т. е., по существу, выхода за рамки классической термодинамики с потерей ее главного преимущества — общности выводов для макроскопических систем. [c.129]

    Предложенная Томсоном модель могла объяснить многие экспериментальные факты, известные к тому времени и которые атомно-молекулярная теория, основанная на неделимости атома, объяснить не могла — явления, происходящие в разрядной трубке, электролиз и др. Однако модель Томсона имела большой недостаток, объяснить который он не мог — почему, собственно атом существует, если он построен согласно такой модели Покоящиеся (или колеблющиеся- возле положений равновесия в атоме) электроны и положительно зарям енная сфера должны были бы действовать друс [c.32]

    На основании рентгеноструктурного анализа и ранее полученных данных о строении нуклеотидов и нуклеиновых кислот Уотсон и Крик предложили для ДНК структурную модель, согласно которой макромолекула ДНК имеет форму спирали, причем в спираль закручены одновременно две молекулы ДНК (двухцепочечная спиральная структура). Эта двойная спираль имеет одну общую ось и построена так, что основания обеих цепей расположены внутри спирали, а углеводные остатки с фосфатными группами — снаружи спирали (рис. 51, 52). При этом основания одной молекулярной цепи с основаниями другой цепи образуют строго фиксированные пары, соединенные друг с другом водородными связями. Симметричное построение спирали требует постоянства межспиральных расстояний, а это возможно лишь в том случае, если размеры пар оснований, расположенных друг против друга, будут одинаковыми. Такому условию отвечают пары, построенные из одного пуринового и одного пиримидинового основания аденин — тимин и цитозин — гуанин, что обеспечивает и максимальное число водородных связей в спирали  [c.362]

    Единственным известным в настоящее время конструктивным алгоритмом построения вероятностной меры на деревьях является тот, который индуцируется ветвящимися процессами. Его реализации составляют множество случайных упорядоченных деревьев — статический лес [153]. В разд. I для некоторых моделей образования полимера было показано, что вероятности различных реализаций ветвящегося процесса совпадают с весовыми долями представляемых ими молекул, т. е. статический лес тождествен клону уиорядоченных корневых молекулярных графов. В других случаях вероятностную меру па статическом лесе можно исиользовать как некоторое приближение для описания распределения деревьев клона [26]. Вероятностные параметры ветвящегося процесса представляют собой доли различных подграфов малого размера, так что появляется возможность непосредственно выразить через них вероятности Р С/, и по формуле (II.9) числа Uk,q) произвольных /i-ад. [c.204]

    Для построения иерархии симметрии молекулярных графов использован квантово-топологический подход, основанный на топологических свойствах зарядовых плотностей в молекулах. Показано, что структуры болыного числа кластерных соединений могут быть предсказаны путем отображения их молекулярных графов на один и тот же полиэдр соответствующие молекулярные графы строятся с помощью простого метода электронного счета. Предлагаемая модель проиллюстрирована примерами детального анализа кластеров, содержащих от 5 до 8 атомов. [c.148]

    Поскольку показанные свойства инвариантны относительно конкретного материала, из которого сделаны исходные ленты, аналогично должны вести себя и ленты молекулярных размеров, если их геометрические особенности будут аналогичны бумажным лентам. Но как перевести эти фокусы с бумагой, клеем и ножницами на язык структурных формул и химических реакций Прежде всего, для этого необходимо сконструировать молекулярный аналог ленты достаточной длины, обладающий следующими свойствами во-первых, иметь рсакционноспособные группы на концах ( липкие концы ), используемые для внутримолекулярной циклизации ленты, и, во-вторых, состоять из двух нитей, связанных временными мостиками, разрыв которых после склетания концов может служить аналогом действия ножниц на бумажной модели. Структура олигомера 128, построенного из двух полиэфирных цепей с мостиками С=С между ними, бьша избрана Уальба [21а] как возможная модель, удовлетворяющая названным требованиям (схема 4.44). [c.432]


Смотреть страницы где упоминается термин Модели молекулярные построение: [c.76]    [c.130]    [c.373]    [c.93]    [c.81]    [c.93]    [c.206]    [c.114]    [c.62]    [c.201]    [c.251]    [c.410]    [c.413]   
Принципы структурной организации белков (1982) -- [ c.161 , c.215 , c.224 , c.244 ]

Принципы структурной организации белков (1982) -- [ c.161 , c.215 , c.224 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Модели построение

Молекулярная модели



© 2025 chem21.info Реклама на сайте