Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод схем ректификационных систем

    Другая модификация метода релаксации [3] была взята нами за основу при моделировании сложной ректификационной системы с взаимосвязанными потоками (рис. 1). Схема этой системы [4—6] имеет значительные экономические преимущества по сравнению с обычными схемами разделения многокомпонентных смесей. [c.100]

    При решении задач синтеза отдельных стадий химического производства наибольший интерес представляют алгоритмы, пост-роенные с учетом специфики внешних источников и стоков тепла. Причем внешними по отношению к данной стадии могут быть потоки других стадий. Естественно, задача синтеза становится значительно сложнее, снижается управляемость производством вследствие появления дополнительных перекрестных связей, но достигается максимальная степень рекуперации энергии внутри схемы. По суш еству, этот переход от декомпозиционного принципа к совместному синтезу приводит к формированию соответствуюш ей стратегии и критерия оптимальности. Совместный синтез в равной степени может привести к изменению традиционной структуры каждой из стадий, поскольку они будут формироваться исходя из единого критерия оптимальности. Примером такой стратегии является синтез теплообменной системы одноколонной ректификационной установки на основе термодинамического метода [31, 32]. [c.468]


    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]

    Ректификационные колонны замыкают технологическую схему производства МВА. Ввиду особых требований, предъявляемых к чистоте целевого продукта, система ректификации включает две последовательно работающие колонны. Вероятностный характер протекающих в них процессов предопределил использование для математического описания методов корреляционно-регрессионного анализа. [c.62]

    В общем случае при решении задачи построения оптимальной схемы разделения многокомпонентных смесей рассматриваются две взаимосвязанные задачи выбор основных методов проведения процессов разделения (обычная, экстрактивная, азеотропная ректификация, сорбционные и экстракционные процессы и т. д.) и построение оптимальной последовательности элементов схемы, в каждом из Кфторых реализуется некоторый тип процесса разделения. Выбор метода проведения процесса разделения принципиально может быть проведен при известных физико-химических свойствах компонентов исходной разделяемой смеси. Все же до настоящего времени этот этап синтеза схемы разделения разработан недостаточно полно я в большинстве случаев в качестве основного функционального элемента системы обычно принимается простая ректификационная колонна, оборудованная собственным кубом и дефлегматором [9, 53-—59]. В некоторых случаях такой метод построения схем ректификации действительно является наиболее экономичным методом разделения исходной смеси на чистые компоненты или на фракции определенного состава [9, 103]. [c.15]


    Необходимо также отметить, что единственным методом, реализованным в промышленном масштабе для извлечения трития из тяжеловодных реакторов и получения товарного трития, является метод ректификации водорода. Принципиальная схема этого процесса была приведена на рис. 6.7.1. Для перевода трития из воды в водород используют каталитическую реакцию (6.7.2), которую проводят в системе пар-газ . В результате этого обмена тритий из молекул ВТО и протий из молекул НВО переходят в водород, который поступает в середину ректификационной колонны первой ступени. Из верха колонны отводятся НО и В2, которые идут на сжигание, образуя воду, содержание дейтерия в которой около 60 ат.%. Из низа колонны первой ступени [c.273]

    НЫЙ на применении фракционной перегонки и экстрактивной дистилляции под давлением. Получаемый при этом продукт имеет температуру замерзания 156,Э С, а при обычном методе очистки—153,8°С (абсолютно чистый бисфенол-А замерзает при 157,25°С). Схема процесса показана на рис. 6. Ацетон непрерывно смешивается с избытком фенола и насыщается хлористым водородом, являющимся конденсирующим агентом. После того как прореагирует практически весь ацетон, реакционная смесь очищается от кислоты и разделяется на три фракции в системе непрерывно работающих ректификационных колонн. Фенол и изомеры [c.89]

    В промышленной практике систем разделения пирогаза применяют два метода выделения тяжелых углеводородов абсорбционный — маслом в системе очистки газа (или перед ней) и ректификационный—на выходе из системы очистки (перед осушкой). В последнем случае очистка от тяжелых углеводородов совмещается с предварительным охлаждением газа. В некоторых схемах используется адсорбция как метод глубокой доочистки от тяжелых углеводородов. [c.137]

    Для расчета статики конденсационно-испарительного процесса была разработана специальная методика 1[4. 5], предполагающая применение вычислительных машин. Проведенные по этой методике расчеты разделения смесей этилен—этан, пропилен—пропан и воздуха по конденсационно-испарительному методу [5, 6] показали, что расход энергии на разделение может быть снижен по сравнению с обычными системами ректификации на 20— 50%. Уменьшение энергозатрат достигается за счет того, что при разделении по конденсационно-испарительному методу подвод холода и тепла осуществляется при переменных температурах, что позволяет обеспечить в процессе разделения уменьшение температурных напоров, и следовательно, сократить потери, связанные с необратимостью процесса. В отличие от этого в обычных ректификационных схемах весь холод и все тепло, необходимые для осуществления разделения, подводятся соответственно при наинизшей и наивысшей температурах процесса. [c.169]

    Одним из подходов к созданию математических моделей, универсальных по классам аппаратов (ректификация, абсорбция, экстракция, азеотропно-экстрактивная ректификация), является метод декомпозиции, заключающийся в представлении общей модели как совокупности элементарных частей [88, 101]. Декомпозиция технологической схемы, включающей различные массообменные аппараты, состоит в разделении ее на массообменные секции и вспомогательное оборудование и выделении из общей системы уравнений математического описания отдельных частей, соответствующих этим секциям с учетом взаимосвязей между ними. Под массообменной секцией понимается физическая последовательность отдельных массообменных элементов, взаимосвязанных друг с другом и не имеющих промежуточных входов и выходов массы и тепла — все входы и выходы сосредоточены на ее концах. При таком определении количество секций зависит от количества и расположения вводов питания и боковых отборов потоков, а различия между ними заключаются, во-первых, в моделях фазового равновесия и массопередачи на ступенях разделения и, во-вторых, в подсоединяемом к секциям вспомогательном оборудовании для ректификационных колонн это кипятильник и дефлегматор, для экстракционных колонн — декантаторь и т. д. [c.398]

    Браутон и сотр. [23] использовали ступенчатую модель для анализа системы парекс. Они предсказали, что в ПДС-системах требуется только 1/25 количества адсорбента, необходимого в элюентной хроматографической системе, и 1/2 требуемого десорбента. Последнее обстоятельство весьма существенно, так как оно означает сильное уменьшение размеров ректификационных колонн, применяемых затем в схеме этого процесса. Точные детали элюентной хроматографической системы, с которой они сравнивали результаты по ПДС-системе, не были приведены. Очевидно, в хроматографической системе не был использован метод циркуляции. Оптимизированный элюентный хроматограф даст характеристики, которые будут намного ближе к ПДС-си-стеме. Это неудивительно, так как ПДС можно рассматривать как усложненное применение техники переключения колонок и рециклов. К сожалению, нельзя непосредственно сравнить ПДС-процесс и систему элюентной хроматографии Сэко и сотр. [4], так как были использованы различные адсорбенты. [c.166]

    Построение технологических схем разделения азеотропных смесей на основе принципа перераспределения концентраций между областями ректификации возможно лишь при наличии данных о фазовом равновесии жидкость — пар в рассматриваемой трехкомпонентной смеси. Если нам известен тип диаграммы, т. е. фазовый портрет системы, причем исследование проведено в нескольких изобарических разрезах, то построение технологических схем и выбор наиболее оптимальной, могут решаться методами оптимального проектирования ректификационных установок, интенсивно развиваемыми в настоящее время на примерах разделения идеальных смесей [191]. Принцип перераспределения концентраций между областями ректификации является универсальным и применим к азеотропным смесям любой сложности, причем средства, которыми осуществляется такое перераспределение , далеко не исчерпываются варьированием внешнего давления, рециркуляцией продукта и добавками разделяющих и азеотропных агентов или экстрагентов. [c.224]


    На рис. 51 изображена технологическая схема процесса фирмы БАСФ. Характерной особенностью процесса БАСФ является сочетание процесса экстракции (система жидкость— жидкость) с процессом абсорбции (система газ — жидкость), применяемым для повышения качества продуктов. Как и многие другие технические процессы экстракции, рассматриваемый метод содержит также ряд элементов процесса экстрактивной ректификации. Сырье поступает в среднюю часть основной экстракционной колонны 1. Экстрагент (НМП, содержащий 5—10% воды) подается в верхнюю часть этой колонны и движется противотоком к сырью. В колонне 1 происходит отделение пентанов и амиленов от всех остальных непредельных углеводородов. На-сьпценная фаза экстракта из низа колонны направляется в верхнюю часть ректификационной колонны 2. Назначением этой колонны является рекзппе-рация экстрагента с одновременным фракционированием экстрагированных углеводородов на три потока смесь изопрена с пентан-амиленовой фракцией, направляемую в рецикл, изопрен-концентрат и смесь ЦПД с пипериленом. Последние два потока подвергаются дополнительному концентрированию в газовой фазе в скрубберах 3 ж4. В первом из этих скрубберов происходит поглощение пиперилена [c.239]

    С использованием этого метода проводился синтез оптимальной схемы процесса, в состав которого входили два реактора полного перемешивания и две простые ректификационные колонны [13]. В данном случае исследователи не столкнулись с какими-либо трудностями как расчетного, так и общего характера. При большем числе переменных было предложено использовать метод прямой оптимизациии в сочетании с ранее разработанным методом декомпозиции [31]. К общим недостаткам методов прямой оптимизации следует отнести прежде всего то, что все дискретные переменные рассматриваются как непрерывные и возникает проблема соответствия получаемого оптимального решения дискретной природе процесса. В связи с этим следует отметить, что обобщение результатов полученного таким образом решения на целочисленные переменные может привести к неоптимальному решению задачи в целом и, кроме того, возникает большая вероятность определения локальных оптимумов для основных проектных и режимных переменных в пределах неоптимальной структуры [9, 13]. Если учесть также трудности, связанные с разработкой схемы, включающей в себя все возможные структурные связи между элементами системы, то использование методов прямой оптимизации ограничивается задачами синтеза систем очень малой размерности и не имеет практически никаких преимуществ перед другими методами синтеза. [c.10]

    Принцип метода т олжен сводиться к созданию непрерывного процесса в залжнутой системе Примерная схема такой установки приведена на рисунке. В смеситель Л, представляющий собой цилиадри-ческий сосуд с мешалкой, вводится нитроклетчатка. Сюда же из холодильника В поступает ацетон. После растворения, облегчаемого перемешиванием, раствор самотеком переливается в куб С, содержащий поступившую через кран а воду. Переливание производится при размешивании. Нагреванием куба С, снабженного ректификационной ко-- [c.89]


Смотреть страницы где упоминается термин Метод схем ректификационных систем: [c.118]    [c.243]    [c.159]    [c.169]    [c.60]   
Математические основы автоматизированного проектирования химических производств (1979) -- [ c.296 ]




ПОИСК







© 2025 chem21.info Реклама на сайте