Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внешнее давление

    Существенные изменения претерпевает вещество при высоких внешних давлениях. Так, при давлениях порядка 10 —10 Па уменьшаются расстояния между атомами в кристаллической решетке, разрушаются химические связи. При этом создаются условия для возникновения новых связей, соответствующих более плотной кристаллической структуре вещества. Широко известными примерами подобного рода полиморфных превращений при сверхвысоком давлении является переход графита в алмаз, нитрида бора в боразон, кварца в новую модификацию (стишовит) с плотностью, на 60% большей, чем у природного кварца, и др. В настоящее время возможность таких полиморфных превращений начинает широко использоваться в технике для получения синтетических твердых и сверхтвердых веществ.  [c.124]


    При постепенном повышении температуры исходной двухфазной жидкой смеси достигается точка, в которой суммарное давление раг паров углеводорода и Н2О становится равным или несколько большим заданного внешнего давления, т. е. раг Р, тогда начинается выкипание системы, продолжающееся до тех пор, пока к ней подводится тепло, компенсирующее скрытую теплоту парообразования перегоняемых веществ. Состав паровой фазы, например, по Н2О представится выражением [c.83]

    При прочих равных условиях интенсивность кавитации увеличивается при использовании топлив с большим давлением насыщенного пара. Наибольшая кавитация возникает, если топливо кипит, т. е. когда давление насыщенных паров топлива равно внешнему давлению. Таким образом, чем больше давление насыщенных паров топлива, тем меньше высота, на которой это топливо закипит и будет наблюдаться наибольшая кавитация. Так, например, топливо с давлением паров, равным 360 мм рт. ст. при 20° С, закипит на высотке 9,5 км, а топливо с давлением паров, равным 40 мм рт. ст. при 20° С, закипит на высоте 20,5 км. [c.53]

    Если при постоянном внешнем давлении менять температуру системы, то уравнения (1.62) и (1.63) позволят находить сопряженные концентрации х ж у равновесных жидких и паровых фаз бинарной системы, подчиняющейся законам Рауля и Дальтона. На рис. 1.9 представлены рассчитанные таким образом изобарные кривые равновесия t — X ж t — у. Обе кривые сливаются в двух крайних точках А ж В, отвечающих температурам кипения чистых компонентов системы. При всех промежуточных температурах t концентрация у паровой фазы НКК больше концентрации а жидкой, и температура системы монотонно возрастает от отвечающего х = у = i, до t , при которой [c.34]

    Таким образом, точка начала кипения смеси углеводород — вода при заданном внешнем давлении совершенно не зависит от состава исходной системы. Точка же начала конденсации паровой смеси углеводород — Н2О полностью определяется составом исходной системы. Только в одном единственном случае, когда состав исходной системы у совпадает с эвтектической концентрацией i/g, точки начала кипения и начала конденсации совпадают. [c.85]

    Растворимость воздуха в топливах значительно меняется от внешнего давления. По мере понижения внешнего давления растворимость воздуха в топливах падает. Вследствие этого при подъеме летательного аппарата на высоту растворенный в топливе воздух начинает выделяться из него. Выделившийся воздух через суфлирующую систему выходит из баков самолета, унося с собой и пары топлива, вызывая его потери. Выделение из топлива избыточного воздуха при наборе высоты значительно облегчает возникновение кавитации в топливной системе, так как объем выделяемого воздуха достаточно велик и может достичь нескольких сотен литров на каждые 1000 л топлива (если учитывать расширение воздуха вследствие уменьшения давления с набором высоты). [c.54]


    Концентрация постоянно кипящей смеси различных гомогенных азеотропных растворов либо вовсе не меняется с изменением внешнего давления, либо сдвигается в сторону большего содержания одного из компонентов, либо, при достижении некоторого значения внешнего давления, азеотропия полностью исчезает, система уже не имеет экстремальных точек на кривой суммарного давления паров, и изобарные кривые кипения и конденсации приобретают монотонный характер. Последняя особенность гомоазеотропов часто облегчает их разделение. [c.323]

    Графически представленная связь между степенью отгона и температурой процесса однократной перегонки под заданным внешним давлением называется кривой однократной перегонки. Как показано выше, ее уравнение для бинарной системы получается путем совместного решения уравнений материального баланса, написанных для каждого компонента, и уравнения парожидкостного равновесия. [c.68]

    Произвол выбора значений переменных ограничен известными пределами, которые нужно все время иметь в виду, так как принятие значения переменного, выходящего за эти пределы может привести к исчезновению одной из фаз. Например, в случае бинарной смеси бензола и толуола, при зафиксированном внешнем давлении в 760 мм, если назначить в качестве второй степени свободы температуру большую, чем 111° С,, т. е. большую, чем температура кипения толуола, то, очевидно, жидкая фаза должна исчезнуть и полученная однофазная газовая система для своей определенности потребует фиксации уже трех степеней свободы. [c.8]

    Задаваясь различными температурами процесса однократной перегонки при выбранном внешнем давлении, определяют /с-фак-торы компонентов системы, вычисляют А ж В ж подстановкой в (11.16) находят степень отгона, отвечающую принятой температуре. Найдя ряд сопряженных значений t — е, строят кривую однократной перегонки бинарной системы EF. [c.68]

    Совершенно аналогично протекает процесс конденсации и в том случае, когда состав ул, исходного перегретого пара меньше состава y , эвтектического пара, отвечающего условию равновесия с двухфазной жидкостью при заданном внешнем давлении. [c.85]

    При заданном внешнем давлении р назначается приемлемая температура /д нижнего продукта и желательная степень его [c.233]

    Расходы тепла на проведение однократных процессов испарения и конденсации однородных в жидкой фазе при точке кипения растворов частично растворимых веществ удобнее всего определять по тепловым фазовым диаграммам. Пусть исходная жидкая система состава а и веса L, находящаяся при некоторой температуре tf , более низкой, чем ее точка кипения под заданным внешним давлением, нагревается до температуры t однократного испарения и равновесно разделяется на две фазы— паровую и жидкую. Пусть вес паровой фазы О, состав у и теплосодержание Q, вес жидкой фазы g. состав х и теплосодержание д. Если начальное теплосодержание сырья составляло Q , и на его нагрев от о до t было затрачено У калорий тепла, то можно написать следующие уравнения теплового баланса процесса и материального баланса по общему весу потоков и по весу содержащегося в них компонента w  [c.62]

    Представляют большой интерес методы разделения бинарных гомогенных в жидкой фазе азеотронных систем, которые при заданном внешнем давлении имеют либо максимальную, либо минимальную точку кипения на диаграмме t — х, у. Процесс выкипания жидкого гомогенного азеотропного раствора протекает при постоянной температуре и одинаковых составах жидкой и паровой фаз, что исключает использование обычных способов ректификации для получения обоих практически чистых компонентов смеси. [c.323]

    Кроме гомогенных в жидкой фазе азеотропов, нечувствительных к изменению внешнего давления, особая техника разделения необходима также для систем близкокипящих веществ с относительной летучестью компонентов, близкой к единице, [c.327]

    При заданном внешнем давлении р назначаются температура низа = д и относительное количество Z перегретого водяного пара в кмолях на кмоль нижнего продукта R. Затем задаются составом XkR нижнего продукта с тем, чтобы последующим расчетом проверить его. Мольная энтальпия Hzn подаваемого водяного пара считается известной. [c.424]

    При рассмотрении про цессов перегонки и ректификации, проводимых практически под постоянным внешним давлением, особый интерес представляют изобарные равновесные кривые кипения и конденсации, характеризующие зависимость температуры кипения жидких растворов и температуры конденсации паровых смесей от концентрации. [c.24]


    Таким образом, именно различие в составе у равновесного пара и в совокупном составе а обоих жидких слоев является причиной того, что имеющее место под постоянным внешним давлением испарение жидкости сопровождается преимущественным выкипанием одного из слоев жидкой фазы, приводящим в конце концов к полному его исчезновению. [c.26]

    Однородным азеотропом принято называть такую совокупность жидкой и паровой фаз рассматриваемой двухфазной системы, которая под заданным внешним давлением при каком-то составе имеет либо максимальную, либо минимальную точку кипения. Согласно второму закону Д. П. Коновалова, в экстремумах точек кипения растворов составы жидкой и паровой фаз совпадают и поэтому жидкая фаза азеотропа кипит при постоянной температуре и находится в равновесии с паром одного и того же с ней состава. По этой причине азеотропы иногда называются постоянно кипящими смесями. [c.33]

    Процессы перегонки и конденсации в промышленных условиях проводятся, главным образом, под постоянным внешним давлением и поэтому в дальнейшем изложении их изучение в системе неидеальных растворов будет вестись по изобарным кривым кипения и конденсации, рассмотренным в предыдущих разделах. [c.41]

    На фиг. 20 приведены равновесные изобарные кривые кипения и конденсации для однородного в жидкой фазе азеотропа с минимумом точки кипения, представленные в системе координат температура—состав . Состав ус, общий для пара и жидкости в азеотропической точке, разделяет равновесную диаграмму на две части, напоминающие обычные изобары веществ, характеризующихся монотонным изменением летучих свойств. Как указывалось ранее, состав азеотропической точки не является постоянным и меняется с изменением давления и поэтому напрашивается мысль о таком изменении внешнего давления, при котором состав, отвечающий экстремальному значению температуры, передвинулся бы в область концентраций, отвечающих практически приемлемой чистоте одного из компонентов системы. Тем самым, совершенно недопустимое для процесса ректификации касание кривых равновесия пара и жидкости передвигается к конечной точке интервала концентраций, оставляя простор для ведения процесса практически во всем интервале существования системы. [c.137]

    Если содержание одного из компонентов системы будет больше, чем определяе.мое соотношением 331, то он остается в жидком остатке, когда другой компонент в составе эвтектического пара полностью выкипит и уйдет в паровую фазу. При этом упругость пара жидкого, уже однокомпонентного остатка станет сразу меньше внешнего давления на величину упругости пара отогнанного компонента, кипение системы немедленно прекратится и возобновить процесс перегонки представится возможным лишь после поднятия температуры жидкости до точки, при которой упругость пара оставшегося компонента сравняется с внешним давлением. [c.161]

    На фиг. 55 представлены изобарные равновесные линии кипения и конденсации для рассматриваемой системы практически нерастворимых в жидком виде компонентов, дающие значения равновесной температуры системы при заданном внешнем давлении в функции составов жидких и паровой- фаз. Линия АВ представляет постоянную температуру кипения гетерогенной жидкой фазы при заданном внешнем давлении, а абсцисса точки Е определяет состав уе пара, равновесного обоим жидким слоям. Линии АС и СЁ, с одной стороны, и BD и DE, с другой, изображают условия парожидкого равновесия для случаев, когда в жидкой фазе присутствует только один из компонентов а или W соответственно, а в паровой фазе представлены оба. [c.163]

    Отсюда видно, что произведение рУ для газа соответствует энергии и имеет размерность работы. Такая работа совершается системой над ее окружением. Но для выполнения этой работы между системой и ее окружением должна существовать какая-то связь, взаимодействие. Эту роль играет внешнее давление, оказываемое на систему окружением. [c.36]

    Вследствие слабого межмолекулярного взаимодействия при малых давлениях и высоких температурах все типичные газы ведут себя приблизительно одинаково. Но уже при обычных температурах и давлениях начинают проявляться индивидуальности газов. Существенные различия, связанные с природой составляющих газ частиц, особенно сильно проявляются при больших давлениях и низких тем-перату11ах, т. е. в тех условиях, в которых газы практически используются в технике. Повышение внешнего давления и понижение тем-перату])ы сближает частицы газа, поэтому межмолекулярное взаимо-действге начинает проявляться в большей степени. [c.123]

    Это же соотношение могло быть написано на основании правила рычага . По мере дальнейшего сообщения тепла температура системы уже не сохранит постоянного значения, ибо в оставшейся двухфазной жидкопаровой системе число ее степеней свободы, согласно правилу фаз, будет равно двум и одного внешнего давления окажется недостаточно для фиксирования состояния системы. В ходе перегонки температура будет прогрессивно расти и фигуративные точки жидкого остатка и выделяемого пара будут двигаться по изобарным кривым кипения ВО и конденсации ЕВ к точке О, отвечающей чистому компоненту ни, который в интервале концентраций жидкой фазы от хъ до I играет роль высококипящего. Вес остатка от постепенного испарения начальной гомогенной жидкости весаУ состава лв до конечной концентрации найдется с помощью ранее выведенной формулы 26 по соотношению  [c.49]

    С (373,15 К), так как при этой Температуре давление, водяного пара равнс внешнему давлению. Для того чтобь закип раствор, давление пара растворителя также должно быть равнс атмосферному. Однако это имеет место при более высокой температуре 4, чем для чистого растворителя 4. [c.131]

    Для химических реакций под работой против внешних сил в основном подразумевается работа против внешнего давления. В первом приближении (при р = onst) она равна произведению давления р на изменение объема системы AV при переходе ее из состояния 1 в состояние 2 А =p V2 V = рДК. [c.159]

    На том же графике уравнение (1.61) изотермы паровой фазы бинарного раствора представлено кривой АНВ она пересекает линию постоянного внешнего давления р = onst в точке Н, [c.34]

    На рис. 1.17 приведена изобарная равновесная диаграмма для эвтектического класса частично растворимых бинарных систем. Между составами ха и хв, отвечающими обеим сосуществующим равновесным жидким фазам А ш В, находящимся под заданным внешним давлением р при температуре проходит изобара жидкости или линия точек кипения, горизонталь = onst. [c.40]

    На рис. 1.18 приведена изобарная равновесная диаграмма для второго типа частично растворимых веществ. Этот класс растворов характеризуется тем, что температура кипения трехфазной парожидкостной системы находится в промежутке между точками кипения ее чистых компонентов. Между составами ха и хв, отвечающими обеим сосуществующим жидким фазам А vi В, находящимся под заданным внешним давлением р при температуре кипения tg, проходит изобара жидкости, горизонталь tg = = onst. [c.40]

    Решение. 1. Для определения состояния равновесной системы в секции питания, помимо назначенного внешнего давления р= 101 325 Па, закрепим температуру системы ,= 135 °С и относительный массовый расход водяного П1ра 2/Ь= 0,039. На основании уравнения (IV.25) можно найти относитель Л09 массовое содержание водяного пара в дистиллятном потоке [c.243]

    СЯ ПОД заданным внешним давлением тс при температуре кипения 4, изобара жидкости или линия точек кипения представляет горизонталь 4 = onst. [c.25]

    Когда один из слоев жидкой фазы полностью выкипает, то система из трехфазнон и соответственно, одновариантной, становится двухфазной и двухвариантной, т. е. приобретает еще одну дополнительную степень свободы. Поэтому в случаях парожидкого равновесия одной жидкой и одной паровой фазы в системе частично растворимых веществ при заданном внешнем давлении температура системы не сохраняет постоянного значения в ходе перегонки и, по мере ее протекания, прогрессивно растет. Изобарные равновесные кривые точек кипения гомогенных в жидкой фазе растворов Z., и даются соответственно ветвями СА и BD общей кривой кипения ABD, горизонтальный участок АВ которой относится исключительно к неоднородным жидким растворам. Изобарные равновесные кривые точек конденсации паров, отвечающих условию равновесия с однофазными жидкими растворами и 2 даются соответственно ветвями СЕ и DE. [c.26]

    На фиг. 16 представлена изобарная равновесная диаграмма для второго, неэвтектического класса частично растворимых веществ. Этот класс растворов характеризуется тем, что температура кипения трехфазной жидко-паровой системы является промежуточной между точками кипения обоих чистых ее компонентов. Между составами х и Хв, отвечающими обоим жидким сосуществующим фазам А я В, находящимся под заданным внешним давлением при своей температуре кипения 4, изобара жидкости представляет горизонталь 4 = onst. Для всех систем, у которых фигуративная точка совокупного состава а обоих жидких слоев попадает в интервал концентраций. га< а < Хв, происходит их расслоение на две жидкие сосуще- [c.28]

    Пусть дана система двух частично растворимых друг в друге веществ второго, неэвтектического типа, разделенная на два жидких слоя, находящихся в равновесии с их общим паром, при точке кипения под заданным постоянным внешним давлением. Из рассмотрения изобарных кривых кипения и конденсации этой системы, представленных на фиг. 16, можно заключить, что пока в системе присутствуют оба жидких слоя, как температура кипения, так и составы обоих жидких слоев и выделяемого пара останутся в ходе испарения неизменными. Единственно, по мере перегонки исходной двухфазной жидкости будет изменяться ее совокупный состав а, передвигаясь на горизонтальном участке АВ существования трехфазной равновесной системы по направлению к точке В до полного исчезновения фазы А состава ха, которое наступит в момент, когда совокупный состав жидкой фазы сравняется с составом лв слоя В. [c.53]

    Если исходная жидкая система однородна при своей точке кипения, то процесс ее перегонки происходит уже в условиях изменяющейся в ходе испарения температуры, ибо такая двухфазная жидкопаровая, двухкомпонентная система, согласно правилу фаз, обладает двумя степенями свободы и кроме постоянного внешнего давления, для определения состояния равновесия, требуется фиксация еще одного интенсивного свойства ее, например, температуры. [c.56]

    В такого рода системе, обладающей двумя степенями свободы, помимо определенного внешнего давления, можно произвольно задаваться еще, например, температурой, и тогда состав у паровой фазы, отвечающей условию равновесия с однородной однокомпонентной жидкостью, определится как абсцисса точки пересечения соответствующей изотермы с равновесной кривой конденсации СЕ пли DE, в зависимости от того, из какого компонента а или гу состоит жидкая фаза. Вторую степень свободы можно использовать и по-другому, задаваясь при определенном внешнем давлении системы составом у пара, равновесного однофазной жидкости, состоящей из компонента а илн w. При этом определится температура, при которой может равновесно существовать парожидкая система данного состава, однокомпонентная в жидкой и двухкомпонентная в паровой фазе, под заданным внешним давлением. [c.163]

    При заданном внешнем давлении р назначается приемлемая томиоратура iai i fiero продукта и желательная степень его чистоты j jj. Принятие этих трех стеиеиси свободы фиксирует состояние равновесной системы в кипятильнике. [c.249]

    Для определения состояния равновесной системы в питательной секции, помимо назттаченного внешнего давления р = 760 мм рт. ст., закрепим температуру системы tm = 135° и относительный весовой расход водяного пара Z/L = 0,039. Имея в виду (V.24), можно найти относительное весовое содержание водяного пара в дистиллятном потоке Z D = 0,039 0,705 = 0,0555. [c.263]

    Гомогенные в жидкой фазе азеотропы не могут быть разделены обычными средствами на свои два практически чистых компонента, нбо одним из концевых продуктов колонны всегда оказывается смесь, кипящая нри постоянной температуре. Путем изменения внешнего давления можно передвинуть азеотрон-ный состав в область концентраций, отвечающих нрактиче-скп приемлемой чтгстоте одного из компонентов системы, и тогда ректификация на практически чистые составляющие окажется уже возмоишой. Это один путь. [c.293]


Смотреть страницы где упоминается термин Внешнее давление: [c.66]    [c.48]    [c.119]    [c.21]    [c.33]    [c.42]    [c.144]    [c.161]    [c.269]   
Смотреть главы в:

Ректификационные аппараты -> Внешнее давление


Химия коллоидных и аморфных веществ (1948) -- [ c.12 , c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте