Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Схемы разделения

Рис. II-2. Схема разделения бинарной (а) и тройной (б) смесей в сложных ректификационных колоннах. Рис. II-2. <a href="/info/68922">Схема разделения бинарной</a> (а) и тройной (б) смесей в <a href="/info/69126">сложных ректификационных</a> колоннах.

Таблица 11.5. Синтез оптимальных схем разделения пятикомпонентной смеси на основе метода динамического программирования Таблица 11.5. <a href="/info/332211">Синтез оптимальных схем</a> разделения пятикомпонентной смеси на <a href="/info/511689">основе метода</a> динамического программирования
    Рассмотрим особенности синтеза разнородных (гетерогенных) схем ректификации нефтяных смесей. В практике нефтегазопереработки такие схемы встречаются на установках каталитического риформинга бензиновых фракций и используются они для выделения ароматических углеводородов из катализатов риформинга. Гетерогенные схемы разделения включают несколько разнородных процессов обычную ректификацию, экстрактивную и азеотропную ректификацию, абсорбцию или экстракцию. [c.144]

    При выборе оптимальной технологической схемы разделения рассматривают также возможность и целесообразность комбинирования нескольких технологических процессов в одной установке или в одном блоке. [c.78]

    Точный термодинамический - расчет ректификации нефтяных смесей представляет довольно сложную вычислительную задачу из-за сложности технологических схем разделения, используемых в промышленности, большого числа тарелок в аппаратах, применения водяного пара или другого инертного агента, из-за необходимое дискретизации нефтяных смесей на большое число условны компонентов и вследствие нелинейного характера зависимости констант фазового равновесия компонентов и энтальпий потоков от температуры, давления и состава паровой и жидкой ф 1з, особенно для неидеальных смесей. Таким образом, основная сложность расчета ректификации нефтяных смесей заключается в высокой размерности общей системы нелинейных уравнений. В связи с этим для разработки надежного алгоритма расчета целесообразно понизить размерность общей системы уравнений, представив непрерывную смесь, состоящей из ограниченного числа условных [c.89]

Рис. 91. Принципиальная схема разделения мыла и неомыляемых по британскому патенту 490785. Рис. 91. <a href="/info/1499465">Принципиальная схема разделения</a> мыла и неомыляемых по британскому патенту 490785.

    Определение оптимальной последовательности отдельных этапов разделения или поиск оптимальной технологической схемы разделения проводится вначале среди простых многоколонных ректификационных систем с последовательно-параллельным соединением колонн, примеры которых для ректификации четырехкомпонентной смеси приведены на рис. II-10. [c.115]

Рис. 99. Схема разделения продуктов изомеризации смесей пентанов и гексанов разгонкой. Рис. 99. <a href="/info/1535378">Схема разделения продуктов</a> изомеризации смесей пентанов и гексанов разгонкой.
    Для синтеза и анализа оптимальных схем разделения требуется разработка специальных методов и алгоритмов моделирования химико-технологических систем на ЭВМ, а также осмысливание и обобщение опыта применения процессов перегонки и ректификации, рассмотрение результатов синтеза и анализа типовых процессов разделения. [c.6]

    Специальные методы расчета процесса ректификации, предназначенные для оптимизации технологических схем разделения, рассмотрены в работах [7, 30]. Они основаны на классических уравнениях Фенске — Андервуда и Геддеса. В этих методах предусматривается раздельное определение состава внешних потоков и флегмового числа, что не требует применения сложных итерационных расчетов. [c.126]

    Дросселирование встречается практически во всех многоступенчатых схемах разделения нефтяных смесей с понижением давления в последующей ступени разделения. Заметное дросселирование потока будет иметь место также в том случае, когда перепад давления потока в трубопроводе соизмерим с давлением в системе. Такая картина, в частности, отмечается при движении мазута в трансферном трубопроводе от печи до вакуумной колонны. [c.55]

    Получение нескольких узких фракций из исходной смеси производится с помощью последовательно работающих простых колонн, соединенных между собой прямыми или прямыми и обратными паровыми и жидкостными потоками. В последнем случае система простых колонн конструктивно выполняется в виде одной сложной колонны с отпарными или укрепляющими секциями. Например, при разделении нефтяной смеси на три дистиллятные фракции и остаток технологические схемы разделения могут быть оформлены в виде пяти различных вариантов (рис. 1-38) трех-, двух- или одноколонных схем. Из двух возможных вариантов двух- [c.76]

    Основная сложность синтеза технологических схем разделения нефтяных смесей на несколько фракций перегонкой и ректификацией заключается в существовании большого числа возможных вариантов схем и сочетания различных процессов и аппаратов. Если в качестве основного метода разделения принять только процесс обычной ректификации, что и используется в большинстве известных алгоритмов синтеза схем разделения, то число однородных или так называемых гомогенных схем может быть определено как [c.100]

    Для синтеза технологических схем разделения нефтяных смесей целесообразно использовать также и термодинамические критерии, например, термодинамический коэффициент полезного действия (т)т), равный отношению минимальной работы разделения смеси заданного состава на чистые компоненты к фактической работе разделения [2, 6]  [c.105]

    Технологические схемы разделения нефтяных смесей могут состоять не только из двух, но и из многосекционных (сложных) колонн с боковыми отборами продуктов или с несколькими вводами питания (рис. П-12). В технологических схемах с многосекционными колоннами первая простая колонна создает один или два сырьевых потока для второй колонны, которая в свою очередь создает уже три и более целевых продукта или сырьевых потока для третьей колонны [20]. Схема, изображенная на рис. П-12, б, получается из обычной многоколонной схемы, показанной на рис. П-11,г при объединении не только тепловых, но и материальных потоков двух последующих колонн. [c.116]

    Выделение последней задачи в самостоятельный этап синтеза обусловлено возможностью построения схем с элементами (подсистемами), связанными между собой тепловыми потоками, тепловыми и материальными потоками или с усовершенствованными элементами схем разделения, рассмотренными ранее. [c.131]

Рис. 1У-23. Принципиальные схемы разделения катализата риформннга с предварительной сепарацией и компримированием газовой фазы с последующей двухступенчатой холодной сепарацией при постоянном давлении (а) и с рециркуляцией газов отдувки (б) Рис. 1У-23. <a href="/info/1499465">Принципиальные схемы разделения</a> катализата риформннга с предварительной сепарацией и компримированием <a href="/info/3194">газовой фазы</a> с последующей двухступенчатой холодной сепарацией при <a href="/info/68371">постоянном давлении</a> (а) и с <a href="/info/29974">рециркуляцией газов</a> отдувки (б)

    В работе [43] показана эффективность и целесообразность направленного применения следующих эвристик для синтеза простых схем разделения  [c.132]

    При алгоритмическом синтезе наиболее часто используют метод динамического программирования. Этим методом последовательно синтезируют оптимальные схемы разделения всех групп компонентов, которые можно получить из исходной смеси, начиная с наименьших трехкомпонентных групп и постепенно переходя к большим. При переходе к увеличенному числу компонентов в группе используют уже найденные оптимальные схемы для разделения групп с меньшим числом компонентов. [c.133]

    Проиллюстрируем применение метода динамического программирования на примере разделения смеси из четырех компонентов АВСО. Выбор оптимальной схемы разделения осуществляют в два этапа. На первом определяют критерий оптимальности для всех возможных групп разделения, составляющих исходную смесь. Определяющим параметром здесь является номер легкого или тяжелого ключевого компонентов. Общее число возможных колонн разделения, отличающихся числом компонентов в питании, номером первого и тяжелого ключевого компонентов, определяется соотнощением [c.133]

    Систематический расчет оптимальной стоимости по каждой группе позволяет определить в итоге оптимальную схему разделения исходной смеси. [c.135]

Рис. П-27. Эволюционный синтез технологических схем разделения многокомпонентной смесн углеводородов Сз—С5 Рис. П-27. Эволюционный <a href="/info/1587507">синтез технологических схем разделения</a> многокомпонентной смесн углеводородов Сз—С5
Рис. П-28. Эволюционный синтез схемы разделения смеси н-гексан — бензол — циклогек-сан направленным поиском. Рис. П-28. Эволюционный <a href="/info/332194">синтез схемы разделения</a> смеси н-гексан — бензол — циклогек-сан направленным поиском.
    Необходимо обратить также внимание на то, что спектр распределения относительной стоимости при синтезе схем разделения бывает довольно узким, т. е. затраты при оптимальной схеме не намного могут отличаться от затрат при других схемах, в том числе полученных обычно на основе термодинамических критериев оптимальности или на основе рассмотренных выше эвристик. [c.139]

    Стабилизация гидрогенизатов гидроочистки и катализатов риформинга нефтяных фракций осуществляется в одну или в две ступени (более подробно этот вопрос рассматривается в гл. V). Технологические схемы разделения катализатов с получением ароматических углеводородов рассмотрены ниже. [c.235]

    При гидроочистке дизельного топлива и бмее тяжелых фракций целесообразно применение горячей сепарации или сочетание горячей и холодной сепараций. На рис. 1У-22 изображена комбинированная схема разделения гидрогенизата широкого фракционного состава с получением фракций бензина, дизельного и котельного топлива [19]. Схемой предусматривается горячая сепарация [c.231]

    В работе [46] рассмотрен метод и алгоритм синтеза технологических схем разделения азеотропных (обычных) смесей с произвольным числом продуктов и процессов разделения. Синтез проводят в два этапа. На первом этапе формируют возможные продуктовые группы (совокупность продуктов, которая может быть выделена совместно на некоторой промежуточной стадии разделения). Формирование проводят исключением тех разделительных процессов, которые не обеспечивают получения заданного ряда продуктов, а также заведомо неэкономичных процессов. Для отбраковки неэкономичных вариантов разделения используют эвристические правила. На втором этапе осуществляют непосредственный синтез оптимальной схемы методом динамического программирования с использованием ранее найденных вариантов продуктовых групп и разделительных процессов. [c.144]

    Для максимального извлечения бензольной фракции 62—85°С предложена последовательно-параллельная схема разделения широкой бензиновой фракции (рис. 1У-3, а) [3]. Схемой предусматривается отбор во второй колонне фракции н.к. — 85°С, которая в паровой и в жидкой фазах поступает на разделение в третью колонну, где и происходит отделение от нее легкой фракции н. к. [c.209]

Рис. 1У-24. Схема разделения катализата риформннга сепарацией и абсорбцией Рис. 1У-24. <a href="/info/68922">Схема разделения</a> катализата риформннга сепарацией и абсорбцией
    Усовершенствование технологии перегонки бензинов обусловлено не только поиском оптимальных схем разделения, но и определением необходимого фракционного и углеводородного состава получаемых фракций, обеспечивающих максимальный выход ароматических углеводородов на установках каталитического риформинга. [c.216]

    О размерности решаемых задач синтеза схем разделения только на основе процесса обычной ректификации можно судить по данным, представленным в табл. 11.1. Следует обратить внимание на то, что число возможных схем ректификации, начиная с семикомпонентной смеси, возрастает быстрее, чем число решаемых подсистем синтеза. К сожалению, в промышленности редко встречаются случаи разделения многокомпонентных смесей с получением семи и более продуктов. Если же учесть возможность использования различных методов разделения в одной технологической схеме, то число возможных структур такой гетерогенной системы будет равно  [c.100]

    Число компонентов или целевых фракций в исходной смеси Число промежуточных и конечных продуктов разделения, включая сырье (подгруппы) [р(р+1)/2] Число решаемых подсистем синтеза (подпро блем) [(р—1)р(р+1)/б] Число возможных структур или схем разделения. Г2(о-П]1 р (р-1)  [c.101]

    При учете эксплуатационных и капитальных затрат были найдены другие эвристики для синтеза схем разделения [37]-  [c.131]

    Дрейфуса с определением оптимальной схемы разделения смеси. Расчеты подсистем проводят от простейшей к сложной — от разделения бинарной смеси к тройным, четверным и т. д. [c.135]

    Рассмотрим в качестве примера синтез схемы разделения девятикомпонентной смеси, состоящей из компонентов А—I, присутствующих в эквнмольном количестве, на практически чистые компоненты. Располагая компоненты в порядке убывания их летучести, определим легкие, средние и трудные для разделения границы между компонентами границы деления указаны ниже косой чертой)  [c.143]

    Рассмотрим технологические схемы разделения рафинатов платформинга с целью получения высококачественных бензинов-растворителей. Растворитель представляет собой пятиградусную гексановую фракцию (65—70°С) с минимальным содержанием микропримесей бензола, серы н непредельных углеводородов. В качестве сырья для получения гексановой фракции используется рафинат платформинга, содержащий менее 0,05 —0,1% (масс.) бензола [24]. Гексановая фракция, выделенная из газового бензина, содержит до 4,9% (масс.) бензола, что значительно превыщает существующие нормы. [c.235]

    Ниже приведены результаты синтеза оптимальных схем ректификации трех- и четырехкомпоненттных сме сей низших ароматических углеводородов (бензола, толуола, ксилолов и этилбензола), проведенного прямым пе реборо(м возможных ва,риантов схем разделения [31, 36—38]. [c.251]


Смотреть страницы где упоминается термин Схемы разделения: [c.79]    [c.271]    [c.7]    [c.77]    [c.100]    [c.102]    [c.122]    [c.131]    [c.131]    [c.132]    [c.132]    [c.246]    [c.251]   
Многокомпонентная ректификация (1983) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте