Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновой характер частиц

    Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности — все это показывает, что классическая механика совершенно непригодна для описания поведения микрочастиц. Так, состояние электрона в атоме нельзя представить как движение материальной частицы по какой-то орбите. Квантовая механика отказывается от уточнения положения электрона в пространстве она заменяет классическое понятие точного нахождения частицы понятием статистической вероятности нахождения электрона в данной точке пространства или в элементе объема с1У вокруг ядра. [c.12]


    Упругие волны в Земле [13]. Распространение упругих деформаций при землетрясениях носит волновой характер. Обычно исследуются продольные Р и поперечные 5 объемные волны, а также поверхностные — волны Рэлея Я, у которых колебание частиц происходит в плоскости, перпендикулярной к поверхности и проходящей через направление сейсмического луча, и поперечные поверхностные волны Лява L. [c.995]

    В волновых свойствах электрона заложен первый из двух основных принципов волновой механики. Вторым является принцип неопределенности Гейзенберга, который находит свое выражение в статистической природе наших наблюдений. Мы уже видели ранее, что до появления волновой механики модели систем атомных размеров обычно строили в соответствии с повседневным опытом. С появлением дилеммы волна — частица впервые оказалось невозможным построение такой детерминистской модели. Это может вызвать сомнения в необходимости рассмотрения волнового характера частиц. Но одновременно возникает вопрос позволит ли последовательное корпускулярное рассмотрение создать такую модель. Весьма возможно, что в случае атома положение может быть совсем иным, нежели в макроскопическом мире. [c.42]

    Волновой характер имеют не только электроны, но также протоны, нейтроны (разд. 3.5) и другие частицы. Их длины волн можно рассчитать по уравнению де Бройля, подставляя в него соответствующие значения масс частиц. Относительная способность разных атомов кристалла рассеивать нейтроны отличается от соответствующей способности рассеивать рентгеновские лучи. Как следствие этого, изучение дифракции нейтронов кристаллами дает дополнительную информацию к той, которую можно получить при изучении дифракции рентгеновских лучей. Оказалось, что дифракция нейтронов дает особенно ценную информацию о расположении атомов водорода в кристалле, содержащем более тяжелые атомы, а также при изучении веществ, обладающих магнитными свойствами. [c.72]

    Это соотношение справедливо также и для более тяжелых ча- стиц, однако при больших массах X становится настолько малым, что обнаружить явления, в которых сказывается волновой характер частиц, становится более затруднительным. [c.27]

    Это может вызвать сомнения в необходимости рассмотрения волнового характера частиц. [c.39]

    Казалось естественным предположить, что катодные лучи представляют собой какую-то форму света, обладающую волновым характером. Волны, подобно свету, распространяются прямолинейно и, подобно свету, не испытывают влияния сил тяготения. В то же время катодные лучи вполне могут представлять собой частицы, движущиеся с огромной скоростью. Поскольку масса этих частиц чрезвычайно мала или поскольку они движутся чрезвычайно [c.147]

    Основной недостаток траекторного метода заключается в том, что оп пе позволяет вычислить вероятности классически запрещенных (например, туннельных) переходов и не дает возможности описать интерференциальные явления, которые вытекают из волнового характера природы движения частиц. [c.57]


    Волновая функция. Поскольку движение электрона имеет волновой характер, квантовая механика описывает его движение в атоме при помощи так называемой волновой функции . В разных точках атомного пространства эта функция принимает разные значения. Математически это записывается равенством 1)3=113 (л , у, г), где х,у,г — координаты точки. Физический смысл волновой функции объяснить пока трудно. Имеет определенный физический смысл ее квадрат 1)5 он характеризует вероятность нахождения электрона в данной точке атомного пространства. Величина 1 з2 У представляет собой вероятность обнаружения рассматриваемой частицы в элементе объема. У. . [c.9]

    Расстояние между узлами кристаллической решетки различных соединений, между соседними атомами в большинстве молекул п размеры самих атомов соизмеримы с полученным значением А. Таким образом, электрон в атоме и молекуле обладает как свойствами частицы, так и волновыми свойствами. Частицы, размеры которых соизмеримы с их длиной волны или меньше, называются микрочастицами или микрообъектами. Частицы больших размеров относят к макрообъектам. Правильное описание движения электрона (микрочастицы) в атоме должно учитывать его двойственный характер. Это невозможно в рамках классической механики Ньютона, но оказывается возможным с помощью более общей механики — квантовой (волновой). Большой вклад в ее развитие внесли В. Гейзенберг и Э. Шредингер. [c.47]

    Длину волны такой частицы часто называют длиной волны де Бройля. Для любой частицы с массой т и известной скоростью длину волны де Бройля можно рассчитать. Например, для электрона с энергией около 1,6- 10" эрг, а это довольно низкая энергия, длина волны де Бройля будет порядка 1,2 А. Эта величина примерно соответствует параметрам кристаллических решеток. Используя близость значений кристаллических параметров и длины волны де Бройля для электрона с энергией около 1,6-10 эрг, Дэвиссон и Джермер показали, что электрон и в действительности имеет волновой характер. Применяя кристалл никеля как дифракционную решетку, они получили дифракционную картину, которую можно было легко объяснить с помощью волнового движения электрона. Если об истинности корпускулярного характера электрона может возникнуть вопрос, то волновые свойства были обнаружены для таких бесспорно материальных частиц, как нейтрон и атом гелия. [c.41]

    Спектр электромагнитного излучения. Самые разнообразные явления — радиоволны и идущие из космоса -(-лучи, лучи Рентгена и видимый свет — оказались одинаковыми по своей природе. Все они являются электромагнитными волнами различной длины волны (частоты). Длина волны электромагнитных волн может изменяться в очень широких пределах от нескольких километров до малых долей ангстрема. Полный спектр содержит все типы электромагнитного излучения, расположенные по порядку от длинных к коротким волнам (см. рис. 9, цветная вклейка в конце книги). В зависимости от длины волны меняется характер излучения и его свойства. В области длинных волн электромагнитное излучение имеет чисто волновой характер. Порция (квант) энергии, соответствующая отдельной группе воли, как видно из формулы (4), очень мала. Поэтому выделить отдельные кванты практически невозможно. Наоборот, в области коротких волн энергия одного кванта велика, и он может быть без труда обнаружен. Но волновые свойства в связи с очень малой длиной волны почти незаметны, и излучение по своему характеру мало отличается от пучка быстрых частиц. [c.25]

    В отличие от классического, квантово-механическое описание состояния системы носит вероятностный характер, отражающий волновые свойства частиц. Квантово-механический принцип неопределенности Гейзенберга говорит  [c.76]

    В 1924 г. Луи де Бройль высказал гипотезу, что все объекты микромира характеризуются двойственной природой, обладая одновременно свойствами частицы и волны. Волновой характер электрона был доказан экспериментально пучок электронов, рассеиваемый кристаллом, дает такую же дифракционную картину, как и рентгеновское излучение. [c.29]

    Расширение исследований в область скоростей, приближающихся к скорости света, потребовало видоизменения уравнений Ньютона для учета зависимости массы тела и масштаба времени от скорости движения (преобразования Лоренца). При изучении движения тел с малыми массами порядка масс элементарных частиц оказалось необходимым учитывать волновой характер их движения. [c.50]

    Классическая физика основывается на двух понятиях — частица и волна. Частицы характеризовались координатой и траекторией. Эта траектория движения частицы в каком-либо поле с учетом взаимодействия между частицами может быть вычислена на основе решения уравнений классической механики, например уравнений Ньютона. Колебания (волны) в отличие от частиц не сосредоточены, а распределены в некотором объеме, где происходят периодические изменения во времени какой-либо характеристики. В звуковых колебаниях в жидкостях и газах меняется плотность, в электромагнитных — электрическое и магнитное напряжение. Критериями принадлежности данного явления к понятиям частицы или волны служили исследования процессов интерференции и дифракции. Их наличие считалось доказательством волнового характера процесса. [c.298]

    До 1924 г. ученые считали, что наблюдаемые свойства электрона вполне соответствуют представлениям о нем как об очень небольшой электрически заряженной частице, во всем похожей, кроме размера, на шарик подшипника, несущий электрический заряд. Но в 1924 г. французский физик Луи де Бройль (род. в 1892 г.) установил волновой характер электрона. Исследуя квантовую теорию при подготовке докторской диссертации в Парижском университете, он установил, что выявляется поразительная аналогия между свойствами электронов и свойствами фотонов, если движущемуся электрону приписать некоторую длину волны. Такая длина волны электрона называется сейчас длиной волны де Бройля. [c.70]


    После первого периода распространения этих новых представлений о природе света и электронов, ученые приняли такого рода идеи и обнаружили, что обычно можно предвидеть, когда в определенном эксперименте луч света следует описывать главным образом через длину волны, а когда определять через энергию и массу фотона. Иными словами, они научились правильно определять, когда целесообразно рассматривать свет состоящим из волн, а когда считать его состоящим из частиц — фотонов. Они научились точно так же распознавать, когда следует рассматривать электрон как частицу, а когда как волну. В некоторых опытах как волновой характер, так и корпускулярный характер сказываются весьма значительно, и в этих случаях необходимо провести тщательное теоретическое исследование с применением уравнений квантовой механики, чтобы предсказать поведение света или электрона. Можно задать и другие вопросы существуют ли электроны и как они выглядят  [c.73]

    Согласно квантовомеханическим представлениям, движущимся микрообъектам присуща двойственная природа они являются частицами, но имеют волновой характер движения, т е микрообъекты обладают одновременно корпускулярными и волновыми свойствами Математически это выражается уравнением де Бройля, согласно которому частице, имеющей массу т и движущейся со скоростью V, соответствует волна длиной А, [c.34]

    В основе интерпретации электронных спектров молекул лежат представления квантовой механики. Квантовомеханическое описание систем, в отличие от классического, носит вероятностный характер, отражающий волновые свойства частиц. В частности, в квантовой механике состояние любой системы из п частиц определяется волновой функцией Р( ,/),где д— набор обобщающих координат дг,. .., д ). Функция Р может быть комплексной ( ) — комплексно-сопряженная ей функция. Вероятность того, что координаты частиц находятся в интервале от до + с1д, определяется величиной с1д = Ч с1д, причем имеет смысл плотности вероятности. [c.221]

    При дальнейшем развитии этих представлений была установлена двойственная природа микрочастицы с одной стороны, корпускулярная, в силу вышеуказанного квантования энергии ее движения, п с другой — волновая, в силу волнового характера движения частицы. [c.70]

    Итак, зная волновую функцию частицы (или системы), можно ска зать, получится ли при измерениях некоторой физической характери" стики одно значение или разброс значений. [c.63]

    Что такое уравнение де Бройля для длины волны, связанной с частицей массы т, движущейся со скоростью у Какое физическое явление впервые прямо доказало, что волновой характер действительно присущ электрону  [c.67]

    Еще большее внимание и интерес вызвало открытие катодных лучей. Как физики представляли себе эти лучи Крукс — английский физик — пришел к сенсационному и фантастическому утверждению. Он рассматривал катодные лучи как поток материи, находящейся в особом, отличном от известных трех, состоянии катодные лучи, по утверждению Крукса, представляли собой новое, четвертое, еще более разреженное, чем газ, состояние материи — это поток мельчайших заряженных частиц, составляющих ничтожную часть атома. Впоследствии они получили название электронов. Вокруг этого представления велись серьезные споры. Оказалось, что этот поток отрицательных электронов, подобно электрическому току, отклоняется под влиянием магнита, однако долго не удавалось установить существования магнитного поля вокруг катодных лучей, а магнитное поле — основной признак электрического тока. Герц, открывший электромагнитные волны, был склонен думать, что и катодные лучи — это какие-то электромагнитные волны. Катодные лучи проникают через тонкое листовое золото и алюминий. Прохождение этих лучей через металлические пленки Герц и считал сильнейшим доказательством их эфирного , волнового характера, совершенно несовместимого с корпускулярной теорией. [c.318]

    На протяжении главы мы могли видеть, что со времен Ньютона объяснение природы лучистой энергии изменялось от одной точки зрения к противоположной и обратно. До исследования Планком проблемы излучения абсолютно черного тела все экспериментальные работы подтверждали волновую теорию излучения. Однако с 1900 г. накопившееся очень большое число экспериментальных фактов несомненно указывало на корпускулярную природу электромагнитного излучения. Так, Эйнштейн, а позднее Дебай разрешили проблему удельной теплоемкости твердых тел на основе квантовых положений, а Комптон объяснил рассеяние рентгеновских лучей электронами при их взаимодействии, как если бы оно произошло между релятивистскими частицами. Поскольку уже нельзя было отрицать, что электромагнитное излучение имеет волновой характер, возможна дилемма фотон—волна или частица Эта проблема не относится к числу легко разрешимых, она не может быть решена при простом химическом или физическом подходе. Здесь приоткрывается новая страница естествознания, а проблема имеет и определенный философский характер. [c.35]

    Из квантовой теории света следует, что фотон неспособен дробиться он взаимодействует как целое с электроном металла, выбивая его из пластинки как целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ее потемнение в определенной точке, и т. д. В этом смысле фотон ведет себя подобно частице, т. е. проявляет корпускулярные свойства. Однако фотон обладает и волновыми свойствами это проявляется в волновом характере распространения света, в способности фотона к интерференции и дифракции. Фотон отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от классической волны — неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон на является, строго говоря, ни частицей, ни волной, — ему присуща корпускулярно-волновая двойственность. [c.66]

    Введение Л. де Бройлем (1924) представлений о волновом характере движения материальных частиц, а также экспериментальное подтверждение К. Девиссоном и Л. Джермером (1927) явле- [c.126]

    Несмотря на то что мы пока не решили, каким образом выразить волновой характер электрона, но тем не менее уверены в том, что это должно быть сделано с помощью волнового уравнения. Это делает необходимым использование волновой функции для описания свойств электрона. Для известных форм волнового движения можно дать вполне разумную и полезную физическую интерпретацию волновой функции. Однако какой смысл будет иметь волновая функция частицы, сказать не так легко. Эрвин Шредингер блестяще продемонстрировал возможности волновой механики в этом направлении еще до того, как появилось приемлемое толкование волновой функции. Сейчас может показаться, что волновая функция имеет только математический смысл и никакой физической интерпретации в действительности и не требуется. Это как будто бы подтверждается наличием умозрительных трудностей, связанных с дуализмом волна — частица. Такая точка зрения должна в особенности импонировать тем, кто любую попытку дать физическое описание всем природным процессам считает помехой для развития науки. Однако, безусловно, следует ноддер- [c.45]

    Электронная оболочка атома —это совокупность элементарных частиц — електронов, каждому из которых присущ корпускулярно-волновой характер. [c.78]


Смотреть страницы где упоминается термин Волновой характер частиц: [c.47]    [c.432]    [c.185]    [c.31]    [c.136]    [c.64]   
Химия (1978) -- [ c.72 ]




ПОИСК







© 2025 chem21.info Реклама на сайте