Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлические пленки

    Металлические пленки как твердые смазки применяются в узлах трения, работающих в вакууме при высоких нагрузках и малых скоростях относительного перемещения. В качестве твердых смазок используются мягкие металлы свинец, серебро, висмут,-золото, кадмий и т. п. [c.207]

    Перед нанесением проводящего слоя на неметаллические формы необходимо выполнить ряд подготовительных операций. Прежде всего поверхность форм должна быть тщательно очищена от загрязнений. Если формы приготовлены из гигроскопических материалов, их необходимо сделать водонепроницаемыми. Например, гипсовую форму обычно пропитывают предварительно расплавленным воском. В тех случаях, когда проводящий слой наносят путем химического восстановления серебра или меди из водных растворов, применяют обработку в растворе хлорида олова, обеспечивающую хорошее смачивание поверхности, качественную структуру металлической пленки. [c.215]


    У очень тонких слоев или тонких металлических пленок (толщина примерно равна длине волны) отражательная способность заметно возрастает, что вызвано уменьшением коэффициента поглощения. Как следствие, они становятся прозрачными при гораздо больших значениях толщины, чем можно было бы ожидать, учитывая их коэффициент поглощения. [c.194]

    Положительный градиент механической прочности можно создать нанесением на поверхности различных смазочных пленок. Твердые смазки как раз и обладают свойством создавать положительный градиент механической прочности при малом значении т. В качестве твердых смазок в настоящее время используются слоистые твердые смазки (графит, дисульфид молибдена, нитрид бора, дисульфид вольфрама и т. п.), тонкие металлические пленки (олово, свинец, висмут и т. п.), композиционные смазки с полимерными связующими, полимерные и комбинированные смазки. [c.204]

    Турбулизация жидких металлических пленок не дает резкого увеличения коэффициента теплоотдачи, как для обычных конденсатов. Это связано с тем, что эффективная турбулентная теплопроводность имеет такое же значение, как и молекулярная. Кроме того, слой конденсата утолщается при турбулизации и понижение коэффициента вследствие утолщения может быть больше, чем увеличение эффек- [c.349]

    Фильтры и монохроматоры. Светофильтры, используемые для выделения необходимой спектральной области источника света, так называемые первичные фильтры, не должны пропускать свет в области, где измеряется люминесценция, и, наоборот, пропускать как можно больше света в области поглощения объекта. Длинноволновая граница пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Фильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных фильтров используются стеклянные фильтры из цветного стекла. В качестве вторичных фильтров могут использоваться клееные стеклянные фильтры и интерференционные-фильтры. Первые состоят из двух стеклянных пластинок и заключенного между ними слоя желатины, окрашенной органическими красителями. Под действием интенсивного облучения эти фильтры со временем портятся. Интерференционный фильтр представляет собой стеклянную пластинку, на которую нанесены две (или более) полупрозрачные металлические пленки, разделенные слоем прозрачного вещества. Для защиты металлического слоя на него наклеивается еще одна стеклянная пластинка. Расстояние между металлическими пленками определяет длину волны света, проходящего сквозь фильтр. Свет, половина длины волны которого равна расстоянию между пленками, пройдет через фильтр, а свет с любой другой длиной волны отразится. Интерференционные фильтры также разрушаются от интенсивного облучения. [c.65]


    Повышение контрастности. Контрастность рельефа реплик обычно невелика, что снижает четкость изображения дета ей поверхности в электронном микроскопе и разрешение последнего. Контрастность реплик повышают путем оттенения деталей их рельефа металлами, напыляемыми на поверхность реплики под углом, т. е. методом косого напыления металлов. Реплику укрепляют на штативе под углом 10—45° (подбирают экспериментально). В нагреватель, представляющий собой лодочку из тантала или спиральный конус из вольфрамовой проволоки, помещают 5—8 мг распыляемого металла (золота, хрома и т. д.) и накрывают его пластинкой с отверстием. Расстояние от реплики до нагревателя 5—6 см. При нагревании в вакууме металл испаряется, причем атомный поток его движется прямолинейно и конденсируется на всех стоящих на пути предметах. В результате на тех участках реплики, которые расположены перпендикулярно атомному потоку, быстро набирается толстый слой металла, участки же реплики, загороженные от потока выступами, практически не покрываются металлической пленкой. В результате на изображении возникают тени (рис. 58) и полутени . Следовательно, напыление позволяет сильно повысить контрастность рельефа реплик. Зная длину тени, можно вычислить глубину рельефа или высоту к различных уступов на реплике по уравнению [c.146]

    Эксперименты с растяжением монокристаллов цинка вместе с тем поставили и новые вопросы. Например, влияет ли на проявление эффекта агрегатное состояние наносимой металлической пленки Чтобы ответить на этот вопрос, опыты проводили при температуре ниже температуры плавления металлопокрытия. При замораживании ртутной пленки нанесенной на монокристаллический цинк, снижения прочности и хрупкости цинка уже не наблюдалось. Следовательно, для проявления адсорбционного понижения прочности твердого [c.221]

    С помощью методов ИП можно определять не только ионы металлов, образующих амальгамы или металлические пленки, но и анионы и ионы, не восстанавливающиеся до металла, если w можно сконцентрировать на электроде в виде нерастворимых соединений с последующим электрорастворением. [c.208]

    Рассеивающая способность металла значительно больше, чем исследуемого объекта, поэтому незначительные изменения в толщине металлической пленки вызывают заметные изменения в контрастности изображения. В местах тени , которые лишены металлической нленки, рассеивание электронов будет минимальным, и на экране микроскопа эти участки выглядят наиболее светлыми. Места, покрытые толстым слоем металла, будут темными (рис. VI.4). [c.187]

Рис. 8, Зависимость (3 от 0 при адсорбции водорода на различных металлических пленках Рис. 8, Зависимость (3 от 0 при <a href="/info/10530">адсорбции водорода</a> на различных металлических пленках
    Активность проявляют металлические пленки, захватывающие водород, кислород и азот в момент конденсации. Отсутствие захвата газа и эффекта промотиро-вания для аргона указывает на существенную роль химических сил, связывающих добавку с решеткой. [c.128]

    Таким образом, возможность стеклообразования зависит от соотношения скорости охлаждения расплава (которая определяет изменение вязкости) и скорости диффузионного перемещения атомов в процессе образования упорядоченной кристаллической структуры. Если скорость изменения вязкости расплава сравнительно невелика, а ориентация атомов в равновесных положениях кристаллической решетки происходит быстро (как у металлических и ионных жидкостей), то стеклообразование отсутствует. Отсюда следует, что при быстром охлаждении можно получить даже металлические стекла. Действительно, при охлаждении металличес-ских расплавов со скоростью порядка 10 град/мин получены стеклообразные металлические пленки. [c.306]

    СМАЧИВАЕМОСТЬ В СИСТЕМЕ МЕТАЛЛИЧЕСКИЙ РАСПЛАВ -ТОНКАЯ МЕТАЛЛИЧЕСКАЯ ПЛЕНКА -НЕМЕТАЛЛИЧЕСКАЯ ПОДЛОЖКА [c.15]

    Для определения адгезии металлических пленок к подложкам применялся метод скользящего индентора [9, 13]. По поверхности пленки перемещался тщательно отполированный наконечник из твердого сплава (радиусом округления 50 мкм), на который прикладывали нагрузки различной величины. При критической нагрузке пленка срывается с подложки и по пути движения остается свободный от пленки канал, появление которого фиксировали с помощью микроскопа. [c.16]

    Возможность обнаружения окисла зависит также от соотношения толщин тонкой металлической пленки и образовавшегося слоя окисла. Если толщина слоя окисла будет значительно меньше толщины тонкой металлической пленки, то обнаружение слоя окисла оптическим методом будет практически невозможным. Для решения поставленной задачи толщина слоя окисла должна быть, по крайней мере, одного порядка с толщиной тонкой металлической пленки. Последнее возможно для пленок, имеющих толщину порядка 150 А и меньше. [c.20]

    Анализируя полученные данные, можно сделать вывод, что в случае смачивания металлами, которые не растворяют металлическую пленку (Мо — С Мо — Ag , Мо — 8п), металлизированных поверхностей окислов, критическая толщина определяется прежде всего температурой отжига пленки, т. е. ее структурой. Так, в системе ЗЮз — Мо — 5п при температуре опыта 900° С критическая толщина равна 250 А, а в этой же системе при предварительном отжиге пленок до 1150° С и температуре опыта 900° С она составляет уже 450 А (т. е. равна таковой системы 5102— Мо — Си, Топ =1150° С). [c.23]


    Формирование сплошной пленки на окисных подложках должно происходить при гораздо большей общей толщине пленки. Это согласуется с имеющимися экспериментальными данными по получению пленок металлов, осажденных на различных субстратах. Так, известно, что металлические пленки, осажденные на металлических подложках (адгезия металл — металл высока), становятся сплошными при меньших толщинах, чем пленки, выращенные на подложках из ионных кристаллов (малая адгезия металл — ионное соединение) [1]. [c.24]

    Для подтверждения предложенного механизма и исключения побочных факторов (механическая прочность металлической пленки, эффект рассредоточения развивающегося усилия и др.) представля- [c.102]

    В работе [4] исследована кинетика реакций дейтерообмена полиметилциклопентанов на поверхности металлических пленок (Pt, Pd, Ni, Rh), a также конфигурационной изомеризации цис- и трамс форм 1,1,3,4-тетра-метилциклопентана и цис-1,2-диметилциклопентана. Изучив кинетику дейтерообмена и конфигурационноп изомеризации, Го и соавторы [4] пришли к заключению, что скорости обеих реакций подчиняются уравнению первого порядка. [c.65]

    Изучение взаимодействия циклопропана и пропана с 02привело к вьгводу [91], что механизм гидрогенолиза циклопропана в присутствии Pt, Pd, Rh и Ir, нанесенных на пемзу, идентичен для всех указанных металлов. Однако в дальнейшем при исследовании гидрогенолиза и дейтеролиза гел1-диметилциклопропана на металлических пленках показано [92, 93], что на Pd и Ni реакция идет преимущественно по ассоциативному механизму. Этот механизм связан с образованием моноад-сорбированного соединения без предварительного раз- [c.104]

    Не только механизм адсорбции, но и механизм катализа можно в некоторых случаях проследить с помощью измерения сопротивления металлической пленки. На рис. XIII, 15 показаны соответствующие кривые для гидрирования бутадиена на нике левой пленке  [c.365]

    При впуске смеси бутадиенводород (1 2) сопротивление резко падает. Так как непредельные углеводороды, адсорбированные на металлических пленках, как правило, при достаточно высоких температурах увеличивают сопротивление, а водород понижает сопротивление металлической пленки, то, следовательно, на никеле адсорбируется преимущественно водород. В ходе реакции сопротивление несколько возрастает. Наиболее вероятно, что потребляющийся при гидрировании водород частично [c.365]

    Определепие вязкости при помощи вискозиметра Фогеля-Оссаг (рис. XI. 33) проводят следующим образом. Крышку 1 отвинчивают и приемный сосуд 2 наполняют нри комнатной температуре испытуемым продуктом до тех пор, пока избыток >кидкости не начнет стекать по проволочному крючку. Затем капилляр ввинчивают в оправу 3 крышки 1, навинчивают последнюю иа наружные стенки сосуда 2 и, укрепив на конце капилляра трубку 4, осторожно при помощи насоса 5 всасывают масло в капилляр до нижней метки т . После этого закрывают кран 6 у насоса, чтобы масло не вытекало обратно, и крепко заворачивают ири помощи специального ключа 7 и привинченной к столу металлической пленки 8 крышку 1, следя за тем, чтобы кольцевая прокладка лежала на месте и хорошо примыкала к поверхности сосуда. [c.313]

    Металлические пленки, получаемые испарением металла и последующей его конденсацией, также захватывают примеси из вакуума . Во время получения этих пленок за счет испарения металла достигается очень высокий вакуум. После этого происходит загрязнение пленки следами газов, выделяющихся из различных частей прибора. Однако благодаря весьма большой величине поверхности пленки могут сохраняться в чистом состоянии значительно дольше, чем нити. Многие пленки, по-видимому, имеют еще и то преимущество, что их поверхность образована преимущественно одной кристаллографической плоскостью. При этом методе приготовления металлических поверхностей создаются необычные условия для процесса кристаллизации [11], и поэтому возможно, что образующаяся кристаллическая грань отличается от граней, возникающих при получении исследуемого металла другими методами. Использование пленок имеет, однако, один недостаток. Вследствие исключительно большой величины поверхности пленок на единицу веса металла [262] они обладают высокой поверхностной энергией. Средняя толщина первичных слоев, из которых состоит вся пленка, очень мала, и поэтому пленки по своим электрическим свойствам отличаются от обычных металлов [263], Во многих случаях у пленок наблюдается некоторое увеличение параметров решетки, достигающее 1—2% [264]. Лишь после сильного спекания их структура приближается к более нормальному состоянию металла. Согласно наблюдениям Миньоле [259], у пленки работа выхода в процессе спекания возрастает, приближаясь к величине, характерной для нормального металла. Вполне возможно, что во время процесса спекания происходит захват примесей. На получение пленок с сильно развитой поверхностью, а следовательно, с предельно открытой структурой большое влияние оказывает скорость испарения и конденсации металла. Пленки вольфрама по своим свойствам несколько более приближаются к нормальным металлам, чем не подвергнутые спеканию никелевые пленки. [c.142]

    В последнее время было установлено, что быстро протекающая адсорбция может часто сопровождаться последующим более медленным поглощением того же газа. Прн повышении давления происходит поглощение дополнительной порции газа, величина которой зависит от давления. Изучение этого явления но многих случаях проводилось на металлических пленках, полученных испарением и конденсацией паров металлов. Поскольку эти пленки являются микропористыми и поскольку даже физическая адсорбция газов на тонкопористых системах, например на угле, может требовать энергии активации [272] (т. е. энергии активации поверхностной миграции), то результаты, полученные на пленках, по-видимому, нельзя считать окончательным доказательством наличия эие згии активации в последних стадиях адсорбции. [c.149]

    К оптическим методам по своей сущности примыкает метод поверхностной проводимости, который был развит в последние годы в работах X. Шимизу, Дж. Бокриса, В. Андерсена и В. Хансена, Т. Куваны и особенно детально в работах Г. Н. Мансурова, О. А. Петрия и сотр. В этом методе измеряют электрическое сопротивление тонких металлических пленок (толщиной не более 500 А, а обычно 100—200 А), нанесенных на непроводящую основу (стекло, ситал, полимерные пленки и т. п.). Из-за небольшой толщины пленок вклад электронов поверхности в их проводимость оказывается значительным. Молекулы адсорбата вступают в до-норно-акцепторное взаимодействие с электронами поверхности металла, что приводит к изменению электросопротивления пленки. Изменение сопротивления пленки может быть связано также с тем, что молекулы адсорбата образуют на поверхности центры кезеркального рассеивания электронов, так что скорость их перемещения вдоль пленки изменяется. Достоинством метода поверхностной проводимости является то, что он позволяет получить информацию о характере взаимодействия частиц адсорбата с металлом. Его применение для количественного изучения адсорбции основано на экспериментально установленном факте наличия прямой пропорциональности между величиной адсорбции и величиной изменения электрического сопротивления. [c.36]

    Для кадмия, олова, свинца, осаждающихся почти без перенапряжения (поляризации), приходится изыскивать специальные условия. В противном случае получаются грубокристаллические некомпактные осадки, совершенно не обладающие защитными свойствами. Металлы, разряд и выделение которых сопровождается высоким перенапряжением, — железо, никель, кобальт, хром — осаждаются в виде мелкокристаллических компактных осадков. Такие металлы, как молибден, вольфрам, титан, тантал и ниобий, вообще не удалось выделить из водных растворов в чистом виде. Они выделяются только в виде оксидов, гидроксидов или очень тонких (до 0,3 мкм) металлических пленок. [c.364]

    Чистые, специально обезгажеиные металлы (в том числе тонкие металлические пленки, нанесенные на стекло), каталитически совершенно неактивны по отношению к гидрированию этилена в присутствии никеля, меди, железа, платины, палладия и вольфрама. Пленки тех же металлов с точно дозированным количеством газовой примеси своеобразно изменяют каталитическую активность в зависимости от содержания захваченной примеси (рис. 21) активность пленок проходит через резкий максимум. Основным меняющимся параметром является атомная доля у, равная у=Ы Ма, [c.127]

Рис. 26. Начальные теплоты хемосорбции водорода (а) и этилена (б) иа металлических пленках (по Бику) Рис. 26. <a href="/info/1743730">Начальные теплоты</a> <a href="/info/307178">хемосорбции водорода</a> (а) и этилена (б) иа <a href="/info/359570">металлических пленках</a> (по Бику)
    Изучение закономерностей взаимодействия металлических расплавов с тонкими пленками металлов, нанесенными на неметаллические материалы, изменение степени смачивания (краевого угла) и адгезии расплав — металлическая пленка — подложка в зависимости от свойств контактирующих фаз, толщины металлизацион-ного слоя и других факторов позволяет выяснить механизм образования связей жидкого металла с твердой фазой, строение напыленных пленок, характер их взаимодействия с расплавом металла. Результаты таких исследований являются основой для разработки технологии металлизации и пайки неметаллических материалов. [c.15]

    В настоящей работе исследовались адгезия и взаимодействие тонких пленок молибдена, ванадия и железа, нанесенных на неметаллические материалы — А12О3 (сапфир), ЗЮг (стекловидный кварц), графит изучалась также смачиваемость этих металлизированных материалов расплавленными металлами (медью, серебром, оловом и свинцом) в зависимости от толщины металлической пленки в области малых толщин 10—10 А. Последнее имеет большое значение при выборе на практике оптимальных толщин покрытий, так как толстые металлические пленки в основном имеют тенденцию к отслаиванию (разность коэффициентов терморасширения металла и неметалла). При малых же толщинах смачиваемость жидким металлом металлизированной поверхности может быть недостаточна. [c.15]

    Металлические пленки наносили на полированные поверхности сапфира, кварца и графита испарением металла с помощью электронно-лучевого нагрева в вакууме 1 10 мм рт. ст. Источником испарения служила капля расплава, возникающая на конце вертикально расположенного стержня напыляемого металла диаметра 2—3 мм, на который фркусировался электронный луч, скорость напыления была 1—10 Kj eK. Температура подложки во время напыления составляла 100—200° С. [c.16]

    Структуру свеженапыленных пленок молибдена и ванадия, а также отожженных при температурах 600, 900, 1150° С исследовали методом поглощения света в области длин волн 350 —500 нм в случае молибденовых пленок, и 350—580 нм для пленок ванадиевых, а также методом электронной микроскопии. Спектрофотометрические измерения давали также информацию об образовании промежуточных фаз и установлении химических связей металлическая пленка — подложка. [c.16]

    Адгезия к окислам металлов и металлических пленок, осажденных на окисную подложку, во многом определяется образованием химических соединений [3], в частности окислов [5, 10, 12L При исследовании тонких пленок молибдена и ванадия, напыленных на подложки SiOj и AlaOg, необходимо обратить внимание на возможность обнаружения на межфазной границе пленка — подложка окислов молибдена и ванадия соответственно. Однако в то время как металл обладает максимально возможным коэффициентом поглощения К Ю —10 смг ) в очень широкой области спектра от жесткого ультрафиолета и до радиоволн включительно, окислы в широких спектральных участках обладают значительно меньшим коэффициентом поглощения [14]. Поэтому сравнительно небольшие по интенсивности полосы поглощения окислов практически невозможно обнаружить на фоне мощного поглощения чистого металла. Лишь в определенных участках спектра, в которых начинаются собственные поглощения, обусловленные междузонными переходами, величина поглощения окисла может в какой-то мере приближаться к коэффициенту поглощения металла. Для обнаружения окислов молибдена и ванадия по оптическому пропусканию тонких пленок, напыленных на окисные подложки, необходимо было выбрать такой спектральный интервал, в котором происходит резкое изменение величины коэффициента поглощения окисла молибдена или ванадия) от сравнительно небольших значений до значений, близких к их металлическому поглощению. Только в этом случае можно обнаружить характерные спектральные изменения пропускания, которые будут указывать на наличие того или иного окисла. Так как при высоких температурах, начиная с 800° С и выше, стабильны только [c.19]

    Анализ зависимости краевых углов смачивания ( os0) металлических пленок, нанесенных на окисные поверхности, расплавами металлов от толщины пленки (рис. 4) показывает, что существенное различие наблюдается в величине наклона начального участка кривой к критической толщине, т. е. минимальной толщине пленки, при которой наступает смачивание, соответствующее смачиванию компактного металла пленки. [c.22]


Смотреть страницы где упоминается термин Металлические пленки: [c.72]    [c.62]    [c.152]    [c.153]    [c.153]    [c.112]    [c.372]    [c.89]    [c.227]    [c.264]    [c.21]    [c.26]    [c.102]   
Смотреть главы в:

Техника и практика спектроскопии -> Металлические пленки

Смазки и родственные продукты -> Металлические пленки

Техника и практика спектроскопии -> Металлические пленки


Кинетика и механизм кристаллизации (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерообмен и дейтерирование бензола на конденсированных из паров металлических пленках в статической системе (Дж Андерсон, Ч. Кембол)

Дислокации в металлических пленках

Защита от коррозии. Электрохимические способы защиты протекторная, катодная, электродренаж. Применение ингибиторов. Металлические покрытия (катодные и анодные). Защитные химические пленки (оксидные и др.). Электролитические конденсаторы. Лакокрасочные и другие неметаллические покрытия

Катализаторы металлические в виде пленок, проволоки или фольги

Коррозионная стойкость металлических пленок на металлических основаниях

Металлические пленки зародышеобразование

Металлические пленки и покрытия

Металлические пленки как катализатор

Металлические пленки эпитаксия

Напыленные металлические пленки

Носители, адсорбция металлических пленок

Пленки, Пленкообразующие металлические

Получение беспористых плотных металлических пленок и покрытий

Получение функциональных металлических пленок и покрытий из карбонилов

Приготовление металлических пленок испарения

Тонкие металлические пленки для микроминиатюризации



© 2025 chem21.info Реклама на сайте