Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругие волны

    Распространение упругих волн в среде сопровождается распространением энергии волна как бы несет с собой сумму кинетической энергии колебательного движения частиц и потенциальной энергии упруго деформированной среды. [c.70]

    Первая количественная формулировка процесса распада была предложена Марселином [2], который, однако, не довел ее до окончательного решения. Позднее Поляни и Вигнер [3 сделали количественный анализ процесса распада, рассматривая молекулу как некоторую упругую среду, в которой распад наступает тогда, когда упругие волны (эквивалентные атомным колебаниям) усиливают друг друга таким образом, что происходит разрыв связи. По форме их закон был таким же, как и закон, выведенный позднее из дискретных моделей молекулы и широко использовавшийся при обсуждении распада нестабильных атомных ядер. Первые результаты, которые можно было при- [c.198]


    Жидкие прослойки на границах зерен в корне меняют упругие, реологические и прочностные свойства пород. По-видимому, именно они являются теми включениями, которые вносят большой вклад в затухание упругих волн, служат путями массопереноса при рекристаллизационной ползучести и постепенно подготавливают катастрофическое разрушение пород в глубинах Земли прн землетрясениях. [c.100]

    Для определения функции распределения частот g v) Дебай проделал следующий расчет. Он предположил, что в любом твердом теле объема V могут устанавливаться как продольные, так и поперечные системы стоячих волн. Чтобы пояснить прием Дебая, рассмотрим следующий простой случай. Пусть кристалл является кубом с неподвижными стенками, причем длина ребра куба а, а объем У=а и прямоугольные оси координат х, у, г) направлены по ребрам куба. В результате отражения упругих волн от неподвижных стенок в упругой среде наблюдаем образование систем стоячих волн. Определим, какие из них могут считаться установившимися. Пусть ААо, ВВа и ССо (рис. 20) представляют собой пере- [c.73]

    При этом условии распространение упругих волн по каналам будет аналогичным распространению их в пористой среде. Неравенство можно представить через скорость звука внутри канала и среднюю скорость движения частиц v, в виде [c.162]

    П. Дебай улучшил теорию, представляя твердое тело в форме сплошной среды. В этой среде могут распространяться упругие волны. Атомы в таком теле обладают спектром колебаний с частотами, изменяющимися в интервале от О до Ущ- Число волн [c.35]

    Остаточные деформации появляются уже в начальной стадии сжатия. Однако они уменьшаются при повторных нагрузках и могут быть сведены к нулю после многократной нагрузки и разгрузки. Одновременно возрастает модуль деформации в 1,2— 1,5 раза по сравнению с Е для недеформированного материала. Еще большую величину имеет динамический модуль упругости, определяемый по скорости распространения упругих волн. [c.14]

    Рассмотрим в качестве примера проточный химический реактор идеального смешения. Для того чтобы составить уравнения исследуемого химического реактора, нужно воспользоваться законами сохранения массы, энергии и импульса, т.е. составить уравнения материального баланса и уравнение теплового баланса реактора что касается закона сохранения импульса, то его можно исключить, если не учитывать влияние изменения давления на ход процессов в реакторе (это упрощение допустимо для проточных реакторов, в которых скорости упругой волны в реагирующей смеси значительно превосходят скорость движения этой смеси вдоль реактора). [c.225]


    Такой метод отраженных волн был предложен советским геологом В. С. Воюцким в 1923 году и получил широкое распространение во всем мире. В настоящее время, наряду с этим методом, используют также и корреляционный метод преломленных волн. Он основан на регистрации преломленных волн, образующихся при падении упругой волны на границу раздела под некоторым, заранее рассчитанным критическим углом. Используются в практике сейсморазведочных работ и другие способы. [c.40]

    В предыдущем разделе было показано, что увеличение коэффициента интенсивности напряжений или С путем вынужденного расширения трещин способствует их росту с докритической скоростью (рис. 9.6 и 9.7). Так как сопротивление материала распространению трещины / растет с увеличением а, то новое равновесие между О и / может быть получено вслед за любым изменением Съ Однако если непрерывно возрастает в зависимости от /Сь то достигается точка нестабильного роста трещины. Нестабильность может характеризоваться тем, что в этой точке сопротивление материала Я а), согласно уравнению (9.13), недостаточно чувствительно к скорости, чтобы компенсировать рост Сх. Следовательно, ускорение роста трещины происходит до такого значения ее скорости, при котором следует учитывать силы инерции и конечную скорость Ve распространения упругих волн [67, 181 —182]. До тех пор вкладом в Я кинетической энергии отступающих поверхностей разрушения пренебрегают. В точке начала нестабильного роста трещины в ПММА со скоростью - 0,1 м/с вклад кинетической энергии равен 6 Дж/м . При таких скоростях этот вклад представляет незначительную часть средней плотности энергии деформации, [c.359]

    Основные физико-механические свойства среды плотность, упругость, структурное строение — определяют постоян- ные, характеризующие распространение в среде упругих волн, т. е. акустические свойства среды (см. Приложение). [c.30]

    Особенности макро.скопической картины поверхности разрушения, показанной на рис. 9.16, могут быть обусловлены распространением трещины, вызывающей расщепление материала, с высокой скоростью перпендикулярно направлению действия локального растягивающего напряжения. Поле локальных напряжений испытывает сильное влияние упругих волн, возбуждаемых на более ранних стадиях развития трещины, и процесса возникновения вторичных трещин. Поверхность разрушения получена путем изгиба надрезанного образца ПЭ при температуре жидкого азота [130]. Поверхность локально гладкая, но в то же время содержит ступеньки и складки. Пересечение волновых фронтов и плоскостей трещин под различными (например, прямыми) углами вызывает образование любопытных кар- [c.390]

    Связь коэффициентов жесткости ортотропного материала со скоростями упругих волн [c.44]

    Волны в слоях и пластинах. Если твердое тело имеет две свободные поверхности (пластина), то в нем могут существовать специфические типы упругих волн [1, 2]. Их называют волнами в пластинах или волнами Лэмба и относят к нормальным волнам, т. е. волнам, бегущим (переносящим энергию) вдоль пластины, слоя или стержня, и стоячим (не переносящим энергии) в перпендикулярном направлении. Решение волнового уравнения для пластины с граничными условиями равенства нулю напряжений на двух поверхностях приводит к системе из двух характеристических уравнений для волнового числа кр. Она имеет два или больше положительных действительных корня в зависимости от произведения толщины пластины на частоту. Каждому из этих корней соответствует определенный тип волны в пластине (мода). [c.25]

    Рассеяние отсутствует в однородных аморфных твердых материалах типа стекла, пластмассы. Слабое рассеяние в них может возникать под влиянием внутренних напряжений, вызывающих изменение скорости звука и преломление (отклонение) упругих волн. В гетерогенных материалах (чугун, гранит, бетон) рассеяние весьма велико. Большое рассеяние наблюдают также в большинстве металлов даже при высокой степени их однородности. [c.33]

    Влияние поляризации упругих волн на их отражение и преломление. При падении плоской продольной волны на границу раздела двух сред возникают смещения и напряжения, ориентированные только в плоскости падения (плоскость рис. 1.11). Следовательно, векторы смещения частиц в отраженной и преломленной волнах лежат в той же плоскости, что и в падающей волне. Поперечные волны будут линейно поляризованы в плоскости падения. [c.41]

    Ниже рассмотрена дифракция упругих волн на объектах правильной геометрической формы, имитирующих реальные дефекты. Точное решение большинства задач о дифракции упругих волн обычно вызывает затруднение, поэтому пользуются приближенными методами. [c.46]

    Дифракция на полом диске. Диском имитируют дефекты типа трещин небольшого размера. Отражатель считают полым, если напряжения на его границах равны нулю. Задача о дифракции на диске входит в число задач о дифракции упругих волн на объектах небольших размеров по сравнению с длиной волны. Точный путь решения подобных задач состоит в разложении падающей и рассеянной волн в ряды по функциям, близким к форме объекта. Для диска используют сплюснутые сфероидальные функции, т. е. соб- [c.47]


    При падении упругой волны на эллипсоид или эллиптический цилиндр формируется дифракционное поле, которое носит черты, характерные для дифракции как на объемных (сфера, цилиндр), так и на плоских (диск, полоса) объектах. В дальнейшем будем рассматривать объект в форме полого цилиндра с эллиптическим сечением. Преобладание того или иного вида дифракции зависит от степени сжатия эллипса, которую определяют отношением Q— [c.52]

    Признаком обнаружения дефектов при дефектоскопии теневым методом служит ослабление амплитуды упругих волн, прошедших через ОК (сквозного сигнала). Количественная оценка выявляемости дефекта при теневом методе определяется отношением электрических сигналов, характеризующим ослабление дефектом амплитуды U сквозного сигнала, прошедшего от излучателя к приемнику Ut/U ] Ut — амплитуда прошедшего сигнала при наличии дефекта. Учитывая пропорциональность электрических и акустических сигналов, имеем ит/ис= рт/ре =Рт/Рс. Это отношение амплитуд лежит в пределах от О до 1. [c.151]

    Удобнее встраивать УЗ-волновод в дно реактора (рис. 10). При этом в случае обработки стационарною слоя исчезает проблема учета изменения высоты обрабатываемого слоя, связанная с оттоком легких фракций. Интенсивность (амплитуду) У 3-поля необходимо рассчитывать с тем условием, чтобы энергия его силового воздействия превышала энергию броуиовског о движения, но не приводила к появлению крупномасштабных конвекционных течений. Ультразвук в жидкости, как правило, представляет собой продольные упругие волны. Амплитуда УЗ-поля задаст разницу перепада давлений между точками максимума и минимума, а частота определяет расстояние между ними, то есть задает величину градиента давления. Таким образом, градиент давления, а, следовательно, степень усиления флуктуаций, можно ре1 улировать, изменяя как частоту, так и интенсивность УЗ-поля. [c.25]

    Упругие волны от места ударного соприкосновения полу-нуфт распространяются как гю валу ЭД, так и по валу насоса. [c.73]

    Существует несколько подходов к выбору расстояния меж ду соседними датчиками при их установке на поверхности кон тролируемой конструкции. В частности, расстояние выбирают так чтобы затухание амплитуды упругой волны, обусловленное внут ренним трением (затухание в дальней зоне), не превышало 20 с1В [c.198]

    Установлено, что коэффициенты теплопроводности аморфных полимеров (рис. 10.1, 10,2) с повышением температуры до области стеклования увеличиваются, а у частичио-кристалличе-скнх полимеров (рис. 10.3, 10,4) уменьшаются вплоть до температуры плавления. Следовательно, характер температурной зависимости X качественно согласуется с зависимостью для низкомолекулярного неметаллического образца, где теплопроводность рассматривается как результат колебательных движений молекул. В диэлектриках механизм теплопроводности — это колебания атомов около положения равновесия в решетке, иначе говоря, тепловое движение в них связано с распространением плоских упругих волн, длпны которых зависят от степени теплоизоляции и температуры. Эти упругие волны, распространяясь от горячей части полимера к холодной, переносят определенную порцию энергии и этим выравнивают температуру образца, что для кристаллических и аморфных полимеров происходит по-разному. Для первых [c.255]

    Вследствие медленного роста микротрещииы (первая стадия) на поверхности разрыва образуется гладкая или зеркальная зона разрушения на второй же стадии, протекающей с большой скоростью, близкой к скорости распространения поперечных упругих волн в твердом теле, возникает шероховатая зона разрушения. Разрушение на второй стадии происходит по механизму, который Гриффит считал единственным и характерным для хрупких тел. Этот механизм разрушения Смекаль назвал атермическим. [c.296]

    В дальнейшем в качестве примера рассмотрим результаты расчетов для органического стекла-—полиметилметакрилата при —20° С (253 К), Для органического стекла модуль Юнга = = 4000 МН/м2 и коэффициент Пуассона ji = 0,3 (исходя из этих данных модуль сдвига G составляет 1500 МН/м2). Плотность полиметилметакрилата р=1,2 г/см . Отсюда следует, что скорость поперечных упругих волн uo= (С/р) /2= 1100 м/с. Следовательно, предельное значение стартовой скорости (при а- оо) равно v = 700 м/с, что хорошо согласуется с данными по макеимальной скорости разрушения полиметилметакрилата (700—800 м/с). [c.308]

    Упругие колебания и волны. Упругость — это свойство твердых тел восстанавливать свои форму и объем (а жидкостей и газов — только объем) после прекращения действия внешних сил. Среду, обладающую упругостью, называют упругой средой. Упругие колебания — это колебания механических систем, упругой среды или ее части, возникающие под действием механического возмущения. Упругие или акустические волны — механические возмущения, распространяющиеся в упругой среде. Частный случай акустических волн — слышимый человеком звук, отсюда происходит термин акустика (от греч. акиайкоз — слуховой) в широком смысле слова — учение об упругих волнах, в узком — учение о звуке. В зависимости от частоты упругие колебания и волны называют по-разному (табл. В.1). [c.5]

    К пассивным методам АК относят акустико-эмиссионный метод (см. 2.7), в котором используют бегущие волны (рис. В.7). Явление акустической эмиссии (от лат. emissio — испускание, излучение) состоит в излучении упругих волн материалом ОК в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин, превращения кристаллической структуры, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с ОК преобразователи принимают упругие волны и позволяют установить наличие источника эмиссии, а при обработке сигналов, проходящих от нескольких преобразователей, — также расположение источника. [c.12]

    Головная волна. Решение задачи о возбуждении упругих волн на ограниченном участке поверхности твердого тела [14] показывает, что вдоль поверхности распространяется волна со скоростью, практически равной скорости продольной волны. В [14] эту волну называют квазиоднороднои, поскольку амплитуда вдоль фронта этой волны изменяется медленно. В советской дефектоскопической литературе ее называют головной (в дальнейшем используется это название), а в иностранной — ползущей, [c.23]

    В каждом направлении в кристалле может распространяться три упругих волны с разными скоростями. В изотропном твердом теле им соответствуют продольная волна и две поперечные с взаимно перпендикулярным направлением колебаний, причем скорости этих поперечных волн одинаковы. В кристалле вектор смещения в каждой волне обладает компонентами как параллельными, так и перпендикулярными направлению распространения, т. е. каждая волна не будет ни чисто продольной, ни чисто поперечной [11, 13]. Изучением связи свойств кристаллов по распространению в них упругих волн занимается кристаллоакус-тика. [c.31]

    Электродинамическое взаимодействие состоит в позбуждении в токопроводящем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. На рис. 1.28 вихревые токи, индуцируемые в ОК катушкой 2 с переменным током, направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности ОК- В результате в ОК возбудится поперечная волна. Обратный эффект состоит в возбуждении вихревых токов в металле, колеблющемся в постоянном магнитном поле под действием упругих волн. Эти вихревые токи индуцируют переменный ток в катушке 2, которая в данном случае служит приемником. [c.68]


Смотреть страницы где упоминается термин Упругие волны: [c.171]    [c.65]    [c.74]    [c.198]    [c.83]    [c.84]    [c.84]    [c.93]    [c.97]    [c.98]    [c.103]    [c.42]    [c.212]    [c.256]    [c.256]    [c.276]    [c.308]    [c.76]    [c.116]    [c.140]   
Кристаллография (1976) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

ВОЗБУЖДЕНИЕ И РЕГИСТРАЦИЯ УПРУГИХ ВОЛН В ОБЪЕКТАХ КОНТРОЛЯ

Взаимодействие инфракрасных световых волн с упругими волнами в кристаллах

Влияние границ на распространение упругих волн

Влияние трения упругости стенок трубы на процесс распространения волн давления

Волны в деформируемых твердых телах. Соотношения теории упругости

Излучение и прием упругих колебаний и волн

Коэффициент поглощения упругих волн

ОБЩИЕ ПОНЯТИЯ О ЗВУКОВЫХ И УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЯХ И ВОЛНАХ Элементы физики упругих механических колебаний

Основные соотношения в упругой волне

Распространение сдвиговых волн в вязкоупругой среЕще одна форма дифференциального оператора модуля упругости

Распространение упругих волн в газообразных, жидких и твердых средах

Скорость продольных упругих волн

Ультразвуковые волны представляют собой особую форму упругих колебаний материальной среды и характеризуются длинами волн в твердых телах от 20 до

Упругие волны в кубических кристаллах

Упругие волны в кубических кристаллах . 6.7. Экспериментальное определение скоростей упругих волн

Упругие волны в полимерах

ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ УПРУГИХ ВОЛН ДЛЯ ИЗМЕРЕНИЙ, КОНТРОЛЯ И ДИАГНОСТИКИ

Фазовая скорость упругих продольных волн



© 2025 chem21.info Реклама на сайте