Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный пучок

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]


Рис. 3. Дифракции электронного пучка. Рис. 3. <a href="/info/68188">Дифракции электронного</a> пучка.
    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]

    Принцип действия и устройство электронного микроскопа. Принцип электронно-микроскопического метода заключается во взаимодействии узкого электронного пучка с достаточно тонким объектом, слабо поглощающим электроны. Длина волны де Бройля для электронов, разогнанных до высоких скоростей в вакууме, составляет 0,005 нм, что значительно меньще межатомных расстояний в конденсированном веществе. Поэтому основными явлениями, возникающими при взаимодействии электронного пучка с веществом, являются рассеяние и интерференция. [c.123]


    Для получения особо чистого молибдена и других тугоплавких металлов применяется плавка в электронном пучке (электронно-лучевая плавка). Нагревание металла электронным пучком основано на превращении в теплоту большей части кинетической энергии электронов при их столкновении с поверхностью металла. Установка для электронно-лучевой плавки состоит из электронном пушки, создающей управляемый поток электронов, и плавильной камеры. Плавку ведут в высоком вакууме, что обеспечивает удаление примесей, испаряющихся при температуре плавки (О, N. Р, Аз, Ре, Си, N1 и др.). Кроме того, высокое разрежение необходимо для предотвращения столкновений электронов с молекулами воздуха, что приводило бы к потере электронами энергии. После электронно-лучевой плавки чистота молибдена повышается до 99,9%. [c.659]

    По мере увеличения энергии электронного пучка вероятность ионизации при столкновении возрастает и возникают пики с большей интенсивностью. При дальнейшем росте энергии электронов большая ее часть передается образующемуся молекулярному иону. Она может быть настолько большой, что в ионе рвутся связи, и происходит фрагментация частицы. Ускоряющий потенциал бомбардирующего электрона, которого только-только хватает для начала фрагментации, называется потенциалом возникновения фрагментарного иона. Если энергия электрона достаточно высока, то в молекуле может происходить разрьш более чем одной связи. Следующая последовательность реакций описывает процессы с участием гипотетической молекулы В — С — О — Е, когда она бомбардируется электронами  [c.318]

    Применение масс-спектрометрии для идентификации очевидно. Чтобы получить воспроизводимый спектр, обычно используют электронный пучок с энергией 40 — 80 эВ, поскольку этот ускоряющий потенциал выше потенциала возникновения большинства фрагментов. Как показывают уравнения (16.6) — (16.16), может происходить много различных процессов фрагментации, приводящих к большому числу пиков в спектрах простых молекул. На рис. 16.3 изображены пики достаточной интенсивности, обнаруженные в масс-спектре этанола. Учитывая очень слабые пики, которые на этом рисунке не показаны, в общей сложности в масс-спектре этанола наблюдается около 30 пиков. Эти пики низкой интенсивности представляют большую ценность для идентификации, но обычно при интерпретации спектра (т. е. при отнесении процессов фрагментации, приводящих к этим пикам) их не рассматривают. Полезная сводка литературных источников по масс-спектрам многих соединений (в основном органических) приведена в списке литературы в конце главы. Интересный пример идентификации продемонстрирован на рис. 16.4, где показаны масс-спектры трех изомеров этилпиридина. Спектры этих трех очень сложных соединений заметно различаются, что представляет ценность для идентификации. Оптические антиподы и рацематы дают идентичные спектры. Проблему при идентификации создают примеси, поскольку основные фрагменты этих примесей приводят к появлению в масс-спектре нескольких пиков низкой интенсивности. Если одно и то же вещество приготовить в двух различных растворителях, то спектры могут достаточно различаться при условии, что весь растворитель не удален из вещества. Загрязнение углеводородной смазкой также может привести ко многим линиям. [c.320]

    В генераторах электронных пучков электроны, эмиттированные катодом под действием ускоряющих и фокусирующих электростатических, а в ряде случаев и магнитных полей, формируются в пучок. Электростатический генератор состоит из катода, блока управляющих электродов и анода. Основными параметрами электронных пушек являются мощность и диаметр пучка. В различных процессах используют пушки мощностью от 10 Вт до 1 кВт с диаметром пучков от 10 5 до 10 1 мм и удельной поверхностной мощностью до 10 Вт/см , пушки с удельными поверхностными мощностями от 10 до 10 Вт/см и, наконец, пушки мощностью от 1 до 100 кВт, удельной поверхностной мощностью от 105 до 1(у7 Вт/см2 и диаметром пучка от нескольких десятых долей миллиметра до нескольких миллиметров. [c.103]

    В 1970-е годы был разработан новый тип низкоэнергетического (0,15-0,3 МэВ) ускорителя электронов с линейным катодом [18]. Отличительная особенность этих ускорителей заключается в большой силе тока пучка. Основной частью ускорителя является электронная пушка, размещенная вдоль оси цилиндрической вакуумной камеры. Катодом служит длинная непрерывно нагреваемая проволока или лента из вольфрама. Применяют также катоды прямого накала с напаянным на ленту эмиттером из гексаборида лантана. Катод окружен оболочкой, покрытой решеткой, на которую подается высокое напряжение от генератора, анодом служит вакуумное окно из тонкой металлической фольги. Ширина электронного пучка в этом ускорителе имеет большую величину (до 200 см), равную длине катода. Для облучения более широких изделий выпускают установки с двумя и более ускорительными трубками. Параллельное размещение нескольких катодов позволяет значительно расширить зону электронного пучка. [c.104]


    Нитрид фосфора может быть синтезирован под воздействием электронного пучка плотностью 15 кА/м , длительностью импульса тока 2,5 мкс, энергией электронов 1 МэВ. Один из электродов камеры служит тиглем для возгонки фосфора. Нитрид фосфора, синтезируемый в таком разряде, представляет собой мелкодисперсное вещество с частицами размером 0,6-2,5 мкм, обладает повышенной термостойкостью и химической стабильностью по сравнению с продуктом, синтезированным чисто химическим способом [4]. [c.188]

    Новый процесс отверждения лакокрасочных органических покрытий основан на применении низковольтного электронного пучка. [c.229]

    Рентгеновское излучение — электромагнитное излучение, возникает при торможении быстрых электронов в веществе. Практически рентгеновское излучение может возникать в лнэ-бых электровакуумных установках, в которых применяются достаточно большие напряжения (десятки и сотни киловольт) для ускорения электронного пучка. Как и гамма-излучение оно обладает малой ионизирующей способностью и большой глубиной проникновения. [c.53]

    Осветительная система предназначена для получения электронов и формирования электронного пучка. Она состоит из электронной пушки, в которой нагретая до высокой температуры вольфрамовая нить испускает электроны, ускоряемые электрическим полем, и конденсорной линзы (электромагнитного или электростатического типа), которая с помощью магнитного или электрического поля фокусирует электронный пучок на исследуемый образец. [c.123]

    Электроны, проходящие через разреженный газ, сталкиваются с молекулой, причем в условиях глубокого вакуума соседние молекулы не оказывают влияния на результаты этого соударения, которые определяются лишь энергией электрона. При достаточно малых энергиях единственно возможным процессом является упругое рассеяние электронов, не изменяющее внутреннего состояния молекулы. Как только энергия электронов окажется несколько выше порога ионизации (10—12 эв), кроме упругого рассеяния, становятся возможными процессы ионизации. Еще большие величины энергии электронного пучка обусловливают возможность не только ионизации молекулы, но и разрыва химических связей [c.14]

    Для определения весьма малых количеств вещества в тонком слое иногда применяют масс-спектрометрию. В этом случае после отделения анализируемого вещества от сорбента и экстрагента его помещают в тонкий стеклянный капилляр и переносят в камеру масс-спектрометра. После откачки воздуха и нагрева вещество испаряется, попадает в электронный пучок источника и анализируется. [c.153]

    При использовании ОЭС травление и регистрация спектра проводятся одновременно (рис. VI.7). Образец бомбардируется сфокусированным электронным пучком и анализируется энергия вторичных электронов (оже), а при одновременном ионном травлении получают послойные профили. [c.150]

    Ход электронного пучка в электронном микроскопе изображен на рие. 11,8. В общем он сходен с ходом световых лучей в обычном микроскопе. Однако поскольку электроны легко рассеиваются и поглощаются, для фокусировки пучка электронов применяют электромагнитное катушки, создающие электростатические или магнитные поля. Для уменьшения рассеяния электронов внутри электронного микроскопа поддерживают высокий вакуум. Наконец, с той же целью для исследования применяют объекты очень малой толщины, нанесенные обычно на тончайшую нитроцеллюлозную, кварцевую, углеродную или другие пленки, прозрачные для пучка электронов. Если последнее условие не будет соблюдено, то под воздействием электронов может происходить нагревание и разрушение объекта. Очень часто вместо самих объектов в электронном микроскопе наблюдают их отпечатки на различных пленках. Такие пленки —отпечатки (реплики) для придания им большей контрастности обычно оттеняют с помощью напыления каким-нибудь молекулярно-раздробленным металлом (например, хромом). [c.49]

    Методы электронографии вследствие малой проникающей способности электронного пучка позволяют детально исследовать только поверхность частиц дисперсной фазы коллоидных систем и макромолекул высокомолекулярных веществ. Электронография позволяет непосредственно определить расстояния между отдельными атомами, лежащими на поверхности, на основании чего можно найти другие параметры структуры вещества. Этот метод исследования особенно пригоден для изучения адсорбционных слоев. [c.50]

    Так, при освещении неподвижного объекта электронным пучком, отклоняющимся в двух направлениях, возникающие изображения направляются на раздельные места экрана и при длительном послесвечении последнего позволяют получить стереоэффект. [c.134]

    Исследуемый образец материала шлифуют и полируют до получения плоского и ровного шлифа. Качество полированного ш,лифа проверяют под микроскопом. Поскольку клинкер и другие вяжущие материалы — диэлектрики, на поверхности их шлифов электроны создают отрицательные заряды, вследствие чего падающий на поверхность электронный пучок начинает скакать , в беспорядке по поверхности, что затрудняет проведение анализа. Поэтому на поверхность полированного шлифа в вакууме напыляют слой хром толщиной 5—10 нм, который предотвращает скопление поверхностного заряда, но вместе с тем не затрудняет доступ электронного зонда к поверхности образца. [c.151]

    Локальное раз личие в ориентировке относитель но электронного пучка (изгиб, складчатость объекта) [c.158]

    В основу методов третьей группы, включающих регистрацию промежуточных соединений, положен анализ оптических спектров, или масс-спектров. В последнем случае схема опыта такова газ, нагретый ударной волной, вытекает из узкого отверстия в торцевой стенке трубы в откаченную камеру время пролетного масс-спектрометра. Ионы, образующиеся при воздействии электронного пучка, ускоряются, попадают в пролетную камеру и далее движутся со скоростями, обратно пропорциональными квадратному корню из массы. [c.301]

    Результаты такого рода исследоваиий с помощью масс-спектрометра при исполь-яовании электронного пучка для обеспечения начального распределения возбужденных яонов были полуколичественно интерпретированы с помощью модели РРК. Однако эти данные являются намного менее точными, и допущения, которые необходимо использовать, требуют обсуждения. Подобная теория была довольно успешно использована для объяснения магс-гн( ктроп углеводородов [10]. [c.201]

    Отобранные из слоя катапнзсгора отдельные гранулы разрезались по диаметру, оовфхвость шлифовалась и зондировалась электронным пучком диаметром [c.123]

    Особенно высоким поляризующим действием обладает ион водорода Н+, который отличается от всех других ионов гораздо мень--шимн размерами и полным отсутствием электронов. Поэтому ноп водорода не испытывает отталкивания от аниона и может сблизиться с ним до очень малого расстояния, внедряясь в его электрон пую оболочку и вызывая сильную ее деформацию. Так, радиус пона h равен 0,181 нм, а расстояние между ядрами атомов хлора и водорода в молекуле НС1 составляет всего 0,127 нм. В дальнейшем мы увидим, что многие кислоты но ряду своих свойств (устойчивость, способность диссоциировать в водных растворах на иоиы, окислительная способность) сильно отличаются от свойств образуемых ими солей. Одной из причин таких различий как раз и является сильное поляризующее действие иона водорода. [c.154]

    Для создания электронных пучков используют специальные электронные пушки с катодами в виде проволочной петли из вольфрама или сплава вольфрама с рением [14]. Плотность тока термоэлектронной эмиссии достигает 5 А/см2. В. игольчатых катодах к вершине петли прикрепляют иглу с радиусом кривизны менее 1 мкм, с поверхности которой в полях напряженностью 10 -10 В/см в результате электронной эмиссии плотность тока возрастает до 10 Л/рм2. В технологических установ1 ах с интенсивными (сильноточными) электронными потоками находят применение плазменные эмиттеры на основе тлеющих и дуговых разрядов [15]. В этих эмиттерах площадь и форма эмиссионной границы определяется свойствами плазмы и условиями токоотбо- [c.102]

    При 200—250 °С наблюдается расслаивание надмолекулярной структуры, что обусловливает появление высокопластичного состояния у асфальтенов. Это приводит к внутриблочной дезориентации слоев, выражающейся в перемещении дифракционных рефлексов в область некогерентного рассеивания при теплавом воздействии электронного пучка. Экзотермический эффект, характерный для спиртобензольной фракции смол при 225—295 °С, связан с уплотнением продуктов термических превращений и образованием надмолекулярных структур. Этот эффект совпадает с температурным интервалом квазиобратимого перехода при термических превращениях асфальтенов. При повышении температуры до 300 начинается выделение низкомолекулярной смолистой фракции, молекулы которой не удаляются при исчерпывающей экстракции гептаном эта фракция составляет 10 —15 %. [c.159]

    Проходя через объект, электроны сталкиваются с ядрами атомов, в результате чего часть из них рассеивается под определенным углом, причем число рассеянных электронов (и угол рассеяния) определяется числом столкновений, которое в свою очередь зависит от плотности объекта, его толщины и скорости электронов. Формирование контрастного изображения объекта на флюоресцентном экране микроскопа связано с разной степенью рассеяния электронов различными участками объекта. Пучок электронов, прощедщий через наиболее толстую часть объекта и имеющий наибольший угол рассеяния, доходит до флюоресцентного экрана значительно ослабленным, в результате интенсивность свечения соответствующего участка экрана мала. При прохождении через более тонкие участки объекта электронный пучок рассеивается меньше и вызывает в соответствующих местах более интенсивное свечение экрана. Так упрощенно можно представить формирование контрастного изображения объекта на экране электронного микроскопа. [c.123]

    Сетку с препаратом вводят через шлюзовое устройство в камеру объектов колонны микроскопа. Сначала пленку-подложку освеп1ают электронным лучом небольшой интенсивности (тренировка). Происходящая при этом карбонизация поверхности полимерной пленки-подложки значительно повышает ее устойчивость к действию электронного пучка большей интенсивности. Затем увеличивают интенсивность пучка и просматривают весь препарат при небольшом увеличении (5000— 10 000 раз), выбирая участок, наиболее подходящий для съемки. После этого устанавливают необходимое рабочее увеличение, наводят на резкость и фотографируют. Данную операцию повторяют 2—4 раза,, исследуя разные участки пленки. При этом общее число отснятых частиц должно быть не менее тысячи. (Операции проявления фотопластинок и получения фотоотпечатков проводят под руководством лаборанта.) [c.126]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Источники электронов (катоды) являются ключевым элементом разнообразных современных приборов, устройств и технологических процессов, основанных на использовании пучков электронов. К числу наиболее известных и важных областей использования таких приборов и технологий относятся средства связи и радиолокации, электронно-лучевые трубки, рентгеновская техника, электронная микроскопия и литофафия, СВЧ печи и т.д. В подавляющем большинтсве случаев для создания электронных пучков используются накаливаемые катоды, имеющие ряд существенных недостатков. Альтернативная возможность создания пучков электронов, позволяющая также существенно улучшить характеристики таких приборов и расширить область их применения, заключается в использовании явления полевой (или холодной) эмиссии. Основным препятствием в использовании холодных катодов являются жесткие требования, предъявляемые к материалу, из которого они могут быть изготовлены. [c.30]

    Обнаружены колебательные состояния структур на поверхности разупорядоченного графита. Особенностью таких поверхностных структур является их метастабильность - время существования таких структур около полугода. Наиболее эффективно такие поверхностные структуры образуются на поверхности графита при облучении ионами или электронным пучком. Сравнение спектров КРС данных поверхностных структур и спектра КРС карбина позволило предложить модель по которой метастабильная поверхностная структура является оборванными карбиноподобных цепочками. [c.144]

    Метод, с помощью которого твердые либо жидкие образцы могут быть введены в систему напуска, нагретую приблизительно до 200° С, был описан Кольдекортом [60]. Менее летучие материалы могут быть введены в масс-спектрометры после нагревания в маленькой печи и испарения непосредственно в электронный пучок такая система применялась ири изучении качественного состава асфальтов [61]. Печка может находиться также и вне ионизационной камеры в этом случае работают с молекулярным пучком образца. Последняя система широко применялась для исследования металлов и других неорганических соединений и продуктов термического распада полимеров [62]. В работе [63] описана конструкция, обеспечиваюи ая непосредственный ввод анализируемого вещества в ионный источник. [c.39]

    Наряду с развитием аналитических методов, учитывающих влияние различных факторов на точность определения потенциала ионизации и потенциала появления, проводились различные усовершенствования аппаратуры для устранения или сведения до минимума эффектов объемного заряда электронного пучка, разброса электронов по энергиям, провисания электростатических полей в ионный источник. Один из наиболее простых методов, с помощью которых может быть уменьшен разброс электронов по энергиям 295], состоит в следующем (рис. 43). Электроны, эмитируемые катодом, ускоряются и направляются в ионизационную камеру под действием потенциала 1/ь Промежуточный электрод / находится под отрицательным потенциалом Уя но отношению к катоду благодаря этому предотвращается попадание в ионизационную камеру электронов с малой энергией. Возрастание ионного тока, наблюдаемого при снижении абсолютного значения Уп на А д (1 1 остается постоянным), представляет собой ионный ток, образуемый моноэнергетичными электронами в диапазоне Лйя- Если абсолютное значение больше, а меньше, то обе эти величины однозначно определяют энергию электронов, образующих наблюдаемую разность в ионном токе. Если разность ионного тока выразить как функцию Ум, сохраняя Ук постоянным, то вблизи потенциала ионизации она становится равной нулю. Подобную схему без особого труда можно осуществить на обычном источнике типа Нира. [c.177]

    I — образец 2 — кратер травления 3 — веяный пучок 4 — возбуждающий электронный пучок б —аиа-лиэируемая точка (перемещается остн) [c.150]

    При сканировании электронного пучка, которое также осуществляется достаточно быстро (метод сканирующей оже-ми-кроскопии СОМ), получают данные о двухмерном распределении элементов по площади (растр), а сочетание с ионным травлением позволяет проводить трехмерный анализ поверхностного слоя образца. [c.151]

    Электронографический анализ осуществляется на электронографах — электронно-оптических вакуумных приборах, которые могут работать и как электронные микроскопы, позволяя получать теневые электронно-оптические изображения, хотя их работа в этом режиме имеет вспомогательное значение. К таким приборам, например, относится электронограф ЭГ-100А. По ходу электронного пучка сверху он имеет следующие основные узлы электронную пушку (источник электронов) двойную электромагнитную линзу кристаллодержатель, позволяющий осуществлять различные перемещения образцов по отношению к пучку электронов камеры образцов проекционный тубус фотокамеру с флюоресцирующим экраном для визуальной работы низко- и высоковольтные блоки питания пульт управления. В электронографе имеется устройство для исследования газов и паров различны < веществ. Разрешающая способность прибора позволяет получать раздельные дифракционные максимумы при различии в меж-плоскостном расстоянии на 0,001 А. Наблюдение дифракционной картины производится на флюоресцирующем экране или фотографическим методом. Электронографическая картина различна в зависимости от типа снимаемого объекта точечная электронограмма образуется при съемке монокристаллов на просвет и на отражение кольца на электронограмме образуются при исследовании поликристаллических веществ дуги и кольца — от веществ, имеющих текстуру. [c.106]

    Электронные микроскопы бывают просвечивающие, отражательные, эмиссионные, зеркальные, растровые, теневые, автоэлектрон-ные, эмиссионные. Они отличаются друг от друга источниками свободных электронов, характером взаимодействия электронного пучка с веществом, методами регистрации дифрагированных электронов. [c.131]


Смотреть страницы где упоминается термин Электронный пучок: [c.93]    [c.253]    [c.160]    [c.30]    [c.132]    [c.84]    [c.136]    [c.148]    [c.149]    [c.152]    [c.86]    [c.86]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.13 ]




ПОИСК







© 2025 chem21.info Реклама на сайте