Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вероятность случайных событий

    Числовую характеристику степени возможности появления какого-либо определенного события в определенных, могущих повторяться неограниченное число раз, условиях называют математической вероятностью случайного события. В нашем примере такими событиями являются температуры, лежащие в интервале. Относительные частоты значений г этих температур колеблются около определенного числа, называемого вероятностью Если п (число опытов) достаточно велико и будет увеличиваться дальше, то относительная частота будет приближаться к постоянной величине, которую называют математической вероятностью. Таким образом, вероятность события г соответствует пределу относительной частоты  [c.244]


    При увеличении числа испытаний статистическая вероятность приближается к теоретической вероятности. Невозможному событию (л = 0) соответствует вероятность, равная О, достоверному (п = Л ) —1 вероятность случайного события заключена между О и 1. [c.14]

    Сведения из теории вероятностей. Случайное событие А характеризуется вероятностью р(А), причем 0<р(Л)<1. [c.122]

    Случайная погрешность -го измерения некоторой величины X может (в принципе) иметь любое значение, однако разные значения имеют разную вероятность появления при очередном измерении. Можно сказать, что вероятность случайного события (в частности, случайной погрешности измерения) распределена по некоторому закону распределения. Таким образом, случайная величина характеризуется областью изменения ее значений и вероятностью, с которой значения случайной величины попадают в некоторый интервал а X Ь в области возможных ее изменений. [c.812]

    Это и есть знаменитая формула Гаусса для плотности вероятности случайных событий. Она применима к нормальному распределению (распределению Гаусса) случайных погрешностей равноточных измерений физических величин. [c.825]

    ВЕРОЯТНОСТЬ СЛУЧАЙНЫХ СОБЫТИЙ [c.23]

    Сумма вероятностей Рт + Рп—1- Следовательно, вероятность случайных событий определяется цифровыми значениями в пределах [c.24]

    Рассмотренный пример дает первое представление о понятии вероятность случайных событий . Мы рассмотрим это понятие подробнее и покажем, что величины, характеризующие случайные погрешности, как и случайные события, законченный смысл имеют только в том случае, если они сопровождаются соответствующими значениями вероятностей. [c.24]

    Это означает, что практически все возможные значения случайных событий лежат в интервале Jf 3a. В интервале х 2а содержится приблизительно 95% вероятностей случайных событий. Существует строгое доказательство (теорема Лапласа), что при большом п биномиальное распределение с хорошим приближением (тем точнее, чем больше п) может быть описано с помощью нормального распределения с тем же средним значением и дисперсией, что у биномиального. Из этого следует, что интервал л+Зст охватывает практически все возможные значения случайных величин не только для нормального, но также для биномиального распределения. [c.43]

    Как правило, построение интегральных показателей сводится к оценке эмпирической вероятности осуществления составных событий S t) на всем периоде имитации в разрезе расчетных интервалов времени. Использование эмпирических вероятностей обусловлены тем, что в общем случае абстрактное событие S t) представляет собой многофакторный нестационарный процесс, исчерпывающее описание которого практически невозможно, а с точки зрения принятия решений — и нецелесообразно. Поэтому на практике (для простоты анализа) принято ограничиваться эмпирическими вероятностями случайных событий на длительном периоде имитации. Поскольку стохастические природные процессы часто рассматриваются как гармонизуемые (с периодом в один год), соответствующие эмпирические вероятности также обычно оценивается либо в годовом разрезе, либо в привязке к конкретным календарным датам. [c.393]


    Вероятность случайного события есть положительное число, заключенное между нулем и единицей. [c.254]

    Если обозначить истинное значение измеряемой величины через X, а погрешность измерения Лх, то пользуясь терминологией теории вероятности случайных событий, можно составить следующее уравнение. [c.35]

    Математические ожидания (т. е. средние значения) потребного расхода блоков Мдб и М б для успешного выполнения операции мы получим с помощью фундаментальной матрицы. Для наглядности зададимся какими-то гипотетическими числовыми значениями вероятностей случайных событий при стыковке г,-. [c.69]

    В нашем случае, например, выпуску нового фасона может предшествовать реклама в газете, по телевидению, выставка-продажа и т. д. Реклама, конечно, требует определенных расходов, но зато возрастает вероятность перехода события В, в состояние A . С другой стороны, наш энергичный директор может организовать, например, в отраслевом институте проведение предварительных исследований на тему о том, где лучше пришивать красивую пряжку , что также направлено иа повышение вероятности случайного события В,. Конечно, и в этом случае возникнут дополнительные затраты, которые, однако, должны окупиться успешной реализацией продукции. [c.76]

    За меру надежности системы принимают вероятность случайного события, в результате которого в течение всего установленного срока эксплуатации не произойдет ни одного отказа. Отказы, вызывающие нарушение нормального водообеспечения при тушении пожаров, могут быть не только в результате аварий и различных повреждений отдельных элементов самой системы ( внутренние отказы водоснабжения), например отказ пожарного гидранта, разрушение участка водопроводной сети, но и в результате воздействия внешних факторов ( внешние отказы водоснабжения), например при чрезмерном отборе воды для тушения пожаров снижается напор воды в сети ниже допустимого предела. [c.36]

    Если вероятность достоверного события принять равной единице, а невозможного — равной нулю, то вероятность случайного события будет находиться между нулем и единицей (вероятность часто выражают также в процентах). [c.9]

    Основные свойства вероятности. Вероятности случайных событий имеют следующие основные свойства  [c.579]

    Вероятность случайного события статистическое определение). Мож но заметить, что при увеличении числа опытов N значение (Л) начинает все более и более устойчиво приближаться к некоторому числу р (Л). Вероятность случайного события может быть определена как предел (Л) прн безграничном увеличении числа опытов N-. [c.588]

    Допустим, что имеется значительное число (порядка сотен) п анализов какого-либо свойства х горных пород, слагающих изучаемый пласт. Из этого статистического материала строится статистический ряд, для чего весь диапазон значений х делится на интервалы или разряды. Число их г выбирают равным 10-20. При этом в дальнейшем оперируют числом п,- случаев Xj, значения которых находятся в пределах соответствующих интервалов. Последние необходимо выбирать так, чтобы они были равны для всех разрядов, а средняя величина рассматриваемого свойства, попавшего в интервал, не должна существенно отклоняться от ее значения в середине данного интервала. Далее подсчитывают число п,- значений х,-, приходящихся на каждый г-й разряд, и, разделив эту величину на общее число п, находят частость (вероятность) случайного события, соответствующую данному разряду  [c.35]

    Из статистического толкования энтропии следует, что возрастание энтропии изолированной системы отражает только наиболее вероятное течение реальных процессов, переход системы из менее вероятного состояния в более вероятное. Однако, так же как малая математическая вероятность случайного события не исключает возможности появления его, статистическое толкование энтропии не исключает возможности перехода системы из более вероятного состояния в менее вероятное, т. е. не исключает возможности процессов, сопровождающихся уменьшением энтропии изолированной системы, хотя вероятность таких прцессов в системах, состоящих из большого числа частиц, оказывается чрезвычайно малой. Например, расчеты [c.62]

    В ряде случаев приходится рассматривать вероятность случайного события А, если известно, что уже произошло некоторое другое событие В, имеющее положительную вероятность - так называемую условную вероятность [Гнеденко, 1965 Боровков, 1976 Гихмап и др., 1979]. Напомним определение условной вероятности. [c.50]


Смотреть страницы где упоминается термин Вероятность случайных событий: [c.123]    [c.1]    [c.2]    [c.2]    [c.52]    [c.190]   
Смотреть главы в:

Теплотехнические расчеты по приведенным характеристикам топлива Изд.2 -> Вероятность случайных событий


Организация перевозок на промышленном транспорте (1983) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Вероятность

Событие



© 2025 chem21.info Реклама на сайте