Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система спиновая энергии переходов

    Теперь рассмотрим эксперимент, в котором образец облучается радиочастотным излучением, соответствующим энергии квадрупольного перехода ядра В, после удаления образца из поля. Кроме того, предположим, что время между удалением образца из поля и повторным его внесением туда мало по сравнению с протонов. Эффект этого радиочастотного излучения заключается в рандомизации ядер В за счет индуцированных им квадрупольных переходов в спиновой системе В. При выполнении соответствующих условий относительно амплитуды приложенного радиочастотного излучения, отвечающих наличию локального поля на протоне, рандомизация спиновой системы В влияет на рандомизацию спиновой протонной системы. Это происходит следующим образом. Если образец удален из поля, то разность энергий между состояниями т= -Ь 1/2 и ш = — 1/2 (т.е. энергия перехода ядра водорода) снижается до нуля. В этом процессе наступит момент, когда разность [c.280]


    Расчет относительных интенсивностей. Ранее мы рассчитали энергии переходов с помощью разностей собственных значений соответствующих спиновых систем на основе правил отбора Дтт = 1. Однако при этом мы не обращали внимания на относительные интенсивности линий, т. е. на относительные вероятности переходов. В случае системы Аг мы хотели бы поступить другим образом. Примем вначале в качестве условия, что в общем случае относительные интенсивности пропорциональны квадрату так называемого момента перехода М между рассматриваемыми собственными состояниями и Он определяется по уравнению (V. 18), в котором используется оператор 1х. Применяя уравнение (V. 18) [c.157]

    Выше было сделано предположение, согласно которому время, необходимое для выстраивания спинов в магнитном поле или для нарушения их ориентации при снятии поля, мало. Эти быстрые процессы называются процессами релаксации и характеризуются временем релаксации, определенным в разд. 10.2. Релаксация ядерных спинов определяется двумя различными процессами. В процессе спин-решеточной релаксации (время релаксации Т,) избыточная спиновая энергия превращается в тепловую энергию решетки. Под решеткой понимается окружение спинов. Колебательные, вращательные и поступательные движения атомов и молекул решетки вызывают появление флуктуирующего магнитного поля на ядре или неспаренном электроне. Это поле, обусловленное магнитными моментами ближайших атомов и молекул, имеет компоненты с частотой, необходимой для индуцирования переходов между состояниями аир. Величина Тг может быть определена в эксперименте со спиновой системой, выведенной из равновесного состояния действием внешнего электромагнитного поля, путем снятия поля и измерения времени, за которое отклонение заселенности уровней от их равновесных значений уменьшается в е раз. Значение Т1 изменяется от 10 до 10 с для твердых тел и от 10-- до 10 с для жидкостей. [c.503]

    Поскольку переход, детектируемый в спектре ЭПР, включает изменение квантового числа т только для одного электрона, энергии переходов для произвольной системы, содержащей любое число ядер со спинами любого типа, можно записать непосредственно как обобщение формул (17.53). Функцию типа спинового произведения можно записать как [c.373]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]


    В любой реальной системе магнитные моменты взаимодействуют с локальными магнитными полями, флуктуирующими вследствие теплового движения атомов и молекул. В результате энергии магнитных моментов (спиновой системы) переходит в энергию теплового движения атомов и молекул (решетки). После выключения поля Я] между системой магнитных моментов и решеткой устанавливается тепловое равновесие, соответствующее температуре тела. Этот процесс называется спин-решеточной релаксацией.  [c.268]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    Насыщение. Как следует из уравнения Больцмана, система ядерных спинов в сильном однородном магнитном поле На при отсутствии радиочастотного поля содержит небольшой избыток ядер на нижнем энергетическом уровне. Под воздействием поля Н1 происходит переход ядер с нижнего энергетического уровня на верхний и в обратном порядке. Такие переходы называются стимулированными. При равной заселенности уровней = Л - а) не будет зафиксировано ни поглощение, ни излучение энергии, хотя переходы между уровнями в такой системе будут продолжаться. Такое состояние системы ядерных спинов называют насыщением. Это состояние может возникнуть при воздействии поля достаточно большой величины. После прекращения воздействия поля Я1 спиновая система возвращается в исходное состояние, которое отвечает распределению Больцмана, и ядерный магнитный резонанс можно наблюдать снова. Поэтому важно понимать, от каких факторов зависит насыщение системы ядерных спинов и какие процессы помогают системе выйти из состояния насыщения. [c.21]

    Важным фактором, влияющим на поведение ядер, является процесс установления равновесного распределения ядерных моментов образца (опин-системы) в поле Но. По(ка образец находится вне магнитного поля, ориентации векторов магнитных моментов отдельных ядер хаотично распределены по всем направлениям вследствие теплового движения атомов и молекул. При внесении образца в магнитное поле Но часть векторов ориентируется по полю, а часть (меньшая)—против поля за счет избыточной тепловой энергии. Такой переход к распределению в поле Но требует некоторого времени. Процессы, требующие времени для установления равновесного распределения, называются релаксационными они проходят через взаимодействие релаксирующих ядер между собой и окружающей средой, решеткой. В теории ЯМР рассматриваются два механизма релаксации спин-спиновый и спин-решеточный. [c.223]

    Спин-спиновая релаксация — это процесс, при котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия передается какому-либо другому спину, находящемуся на нижнем уровне. Получивший энергию спин переходит на верхний уровень. Благодаря этому процессу происходит перераспределение избыточной энергии спина по всей системе спинов. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации Гг. [c.96]

    Величина l/Ti является, таким образом, константой скорости перехода возмущенной системы в равновесное состояние. Поэтому энергия переносится от спиновой системы к окружению, так называемой решетке. Процесс, описываемый уравнением (VII. 5), называется продольной релаксацией, а Ti соответственно называют временем продольной или спин-решеточной релаксации. [c.235]


    Важный механизм поперечной релаксации основан на обмене энергии внутри спиновой системы. Любой переход ядра между [c.238]

    Изменение интенсивностей линий ядерного резонанса, которое возникает в результате этого эксперимента, можно понять, если обратиться к рассмотрению диаграммы Соломона, приведенной на рис. IX. 12. На нем представлены собственные состояния двухспиновой системы 13 в магнитном поле. Всего существуют четыре состояния с различной энергией, и их расположение определяется знаками ядерного и электронного спинов. Переходы ядра или электрона могут быть индуцированы ВЧ-полем с частотой V/ или соответственно. Рассмотрим вероятность W тех релаксационных переходов, которые ответственны за поддержание больцмановского распределения. Пусть величины и W l соответствуют вероятности продольной релаксации ядерного и электронного спинов соответственно. Кроме того, имеются также определенные вероятности переходов ( 2 и Wй, в которых ядерный и электронный спины переворачиваются одновременно. 1 2 и 1 о имеют заметный вклад только тогда, когда имеется спин-спиновое взаимодействие между спинами / и 5. Если насыщается электронный резонанс, т. е. переходы (3)->-(1) и (4)— (г), ВЧ-полем В с частотой Уз, то больцмановское распределение между состояниями (3) и (1), а также (4) и (2) нарушается, т. е. населенности состояний (1) и [c.319]

    Для того чтобы понять это явление, вспомним, как выглядит диаграмма энергетических уровней системы Аг (см. рис. V. 2). При использовании функции симметрии получим антисимметричное состояние и три симметричных собственных состояния, связанные вырожденными переходами Е2 Е и 4-> 2 (рис. IX. 38, а). Взаимодействие двух ядерных спинов Ц) и цг, разделенных расстоянием гц, вызывает либо стабилизацию, либо дестабилизацию собственных состояний спиновой системы. Энергия взаимодействия задается выражением  [c.361]

    Выше показано, что ожидаемый спектр пропорционален интегралу Фурье от момента перехода Л/ а)>, причем состояние р лежит ниже по энергии, чем а. Тогда для моментов переходов в межмоле-кулярном спиновом обмене будет выполняться система дифференциальных уравнений  [c.265]

    Спи и- спиновая релаксация — это процесс, прн котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия безызлучательно передается какому-либо другому спину, находящемуся на нижнем уровне. Спин, получивший энергию, переходит на верхний уровень. Вследствие этого процесса происходит перераспределение энергии по всей спиновой системе. В основе спин-спинового взаимодействия лежит тот факт, что в любой реальной системе парамагнитная частица находится не только во внешнем магнитном поле, но также подвергается воздействию локальных магнитных полей, создаваемых соседними парамагнитными центрами. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации T a T a — среднее время жизни спина на верхнем уровне, обусловленное спин-спиновой релаксацией. Аналогичным образом может быть определено и — как среднее время жизни спина на верхнем уровне, обусловленное спин-решеточной релаксацией, [c.234]

    В разд. 12.4 мы нашли в рамках приближения Хюккеля я-элек-тропные волновые функции для молекулы бутадиена. Анион-радикал бутадиена имеет неспаренный электрон на орбитали фз [см. выражение (12.35в)]. В этой системе содержится шесть протонов, что приводит в целом к 2 = 64 протонным спиновым состояниям. Некоторые из этих состояний являются вырожденными вследствие эквивалентности четырех протонов А и двух протонов В. Энергии переходов можно определить при помощи формулы (17.58). Если бы не существовало указанной выше эквивалентности, то спектр содержал бы 64 перехода, однако [c.375]

    Еслт теперь дать возможность системе взаимодействовать с системой "г со скоростью ИТ , то спиновая энергия будет переходить от S-1 к S2 до тех пор, пока не установится их взаимное равновесие. Образец теперь будет характеризоваться температурами [c.378]

    С другой стороны, в любой реальной системе ядра всегда взаимодействуют с атомами и молекулами. Это взаимодействие приводит к постепенному переходу энергии спиновой системы в тепловое движение атомов и молекул, т. е. при выключении поля Н в системе магнитных моментов устанавливается тепловое равновесие, соответствующее температуре тела. Этот процесс называется спин-рвшвточной релаксацией. Данное название обусловлено тем, что в твердом теле (кристалле) тепловое движение представляет собой колебания кристаллической решетки, однако оно используется для всех случаев установления теплового равновесия между спиновой системой и остальными степенями свободы тела. [c.213]

    Как в любом другом спектроскопическом методе, переходы между энергетическимн, в данном случае спиновыми, уровнями, сопровождающиеся изменением энергии системы, удовлетворяют [c.10]

Рис. 11.7. Схема уровней энергии и переходов для спиновой системы [АВ, 1лвФ0 Рис. 11.7. Схема уровней энергии и переходов для спиновой системы [АВ, 1лвФ0
    Рассмотрим два ядра / и со спином 1/2, одинаковыми у, но разными химическими сдвигами. Предположим, что 01ги находятся в одной молекуле, но не испытывают спин-спинового взаимодействия. Такая система будет иметь четыре уровня энергии, соответствующие состояниям ядер аа, а(3, ра и рр (рнс. 5.1). Химические сдвиги в общем случае очень малы в сравнении с ларморовой частотой (миллионные доли), поэтому переходы различных ядер будут иметь приблизительно равную энергию, а состояния ар и ра будут почти вырожденньп ли. На рисунке различие их энергий для наглядности сильно преувеличено. Мы предполагаем отсутствие косвенного спин-спинового взаимодействия, поэтому оба перехода ядра /, так же как и 5, имеют в точности одинаковую энергию. В результате в обычном спек1ре будут наблюдаться два сипглета равной интенсивности. [c.147]

    В циклич. комплексах с В. с., в к-рых каждая молекула образует две B. . с участием атома Н и неподеленной пары электронов атома функц. группы, происходит синхронное перемещение протонов по В. с.-выро ж де нны й обмен между двумя эквивалентными состояниями комплекса. Этот процесс в газовой фазе и в малополярных апротонных р-рителях определяет механизм рьции протонного обмена АН -t- ВН АН -t- ВН (атомы А и В м. б. одинаковыми). Скорость вырожденного обмена растет с увеличением прочности B. . в циклич. димерах карбоновых к-т, комплексах к-т со спиртами константа скорости процесса превышает 10 с" при 80 К. Протонный обмен спиртов с водой, к-тами, вторичными аминами в инертных р-рите-лях или в газовой фазе изучают по скорости установления равновесного распределения изотопной метки или по форуме сигналов спин-спинового взаимод. в спектрах ЯМР. Установлено, что р-ция имеет первый порядок по каждому из компонентов, т.е. является бимолекулярной, константы скорости составляют 10 -10 лДмоль-с), энергия активации-от 4 до 20 кДж/моль. В случаях участия группы АН во внутримолекулярной B. ., включения неподеленной пары электронов в сопряжение (напр., в амидах, пирролах), снижения протонодонорной или протоноакцепторной способности фрагментов (напр., для тиолов, вторичных фосфинов) скорость обмена снижается, энергия активации р-ции увеличивается. Синхронный переход протона в системах с невырожденным обменом иногда м. б. механизмом установления прототропных таутомерных равновесий. [c.404]

    В рассмотренном примере ион С1 можно представить условно точечным зарядом, определяющим поле, в к-ром движется единств, электрон иона Ti " , поэтому результаты, полученные на основе П. л. т. и теории кристаллич. поля, качественно совпадают. Однако количеств, оценки, напр, для потенциалов ионизации, рассчитанных на основе Jfyn-манса теоремы, или для энергии электронных переходов е в низшее возбужденное состояние комплекса, существенно различаются. В хелатных, сэндвичевых соед., координационных соед. с я-связями лиганды - металл и во мн. др. комплексах с легко поляризуемыми лигандами электронное состояние лигандов и центр, атома нельзя определять как обусловленное воздействием поля системы точечных зарядов. В таких случаях применима лишь П. л. т., но не теория кристаллич. поля. То же относится к проблемам исследования перераспределения спиновой плотности методами ЭПР и анализа взаимодействия электронных и колебат. движений в молекуле (см. Яна-Теллера эффект). П. л. т. позволяет объяснить т/>акс-эффект при замещении лигандов, взаимное влияние лигандов на реакц. способность комплекса и т.п. [c.65]

    Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электромагн. излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцманов-ского распределения заселенностей подуровней необходимы релаксационные процессы. Релаксационные переходы электронов из возбужденного состояния в основное реализуются при обмене энергией с окружающей средой (решеткой), к-рый осуществляется при индуцированных решеткой переходах между электронными подаровнями и определяется как спин-решеточная релаксация. Избыток энергии перераспределяется и между самими электронами - происходит спин-спиновая релаксация. Времена спин-решеточной релаксации Г] и спин-спиновой релаксации Т2 являются количеств, мерой скорости возврата спиновой системы в исходное состояние после воздействия электромагн. излучения. Зафиксированное регистрирующим устройством поглощение электао-магн. энергии спиновой системой и представляет собой спектр ЭПР. [c.448]

    Поглощенную энергию система перераспределяет внугри себя (т. наз. спин-спиновая, или поперечная релаксация характеристич. время Т ) и отдает в окружающую среду (спин-рещеточная релаксация, время релаксации Ti). Времена Ti и Т2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Г, и Гг от т-ры и частоты дают информацию о характере теплового движения, хнм. равновесиях, фазовых переходах и др. В твердых телах с жесткой решеткой Гг = 10 мкс, slTi> 10 с, т.к. регулярный механизм спин-решеточной релаксации отсутствует и релаксация обусловлена парамагн. примесями. Из-за малости Гг естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В жидкостях малой вязкости Г1 я Гг и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10" ГЦ (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Эго накладывает существенные ограничения на чувствительность спектрометров ЯМР. [c.517]

    Правдоподобное объяснение этого явления — известного как эксперимент по спин-тиклингу — состоит в том, что в результате возмущения состояния и 3 спиновой системы смешиваются при этом становятся возможными два перехода. Новый переход практически соответствует ранее запрещенному двухквантовому переходу Ец Е. Очевидно, что в таком эксперименте должна проявляться связь между энергетическими переходами. Мы будем различать прогрессивно связанные переходы, в которых три собственных значения энергии изменяются в одном направлении (например, /2 и /3), и регрессивно связанные переходы, в которых собственное значение энергии промежуточного состояния больше или меньше энергии начального и конечного состояний (например, f2, f4 или fз). Начальное и конечное состояния прогрессивно связанной пары линий различаются по значению полного спина на две единицы Ашт = 2. Для регрессивно связанной пары Ашт = 0. [c.312]

    Рассмотрим еще раз эксперимент, который только что бьи описан, однако на этот раз обратим внимание на величинь энергий, обменивающихся с решеткой в релаксационном про цессе. Для любой квантовомеханической системы, которая ха рактеризуется двумя уровнями энергии Ер и Ед, равновесие ус танавливается таким образом, чтобы число переходов Ер Е, было равно числу переходов Ед Ер. Отсюда следует, что дл собственных состояний (1) и (4) спиновой системы выпол няется уравнение [c.320]

    Поглощение энергии соответствует переходу какой-то части избыточной заселенности нижнего уровня на верхний уровень. При отсутствии взаимодействия между системой ядерных спинов и окружающей конфигурацией, именуемой решеткой , поглощение энергии продолжалось бы лишь до момента выравнивания заселенностей обоих уровней, когда спиновая температура становится бесконечной и поглощение излучения прекращается. В реальной физической системе различные механизмы взаимодействия системы ядерных спинов с решеткой приводят к охлаждению ядерных спинов и, следовательно, к установлению стационарного состояния. Процесс охлаждения ядерных спннов получил наименование спин-решеточной релаксации. [c.259]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]

    Ядернын магнитный резонанс (ЯМР). как и ЭПР, основан на принципе магнитного резонанса. Поглощение радиочастотной энергии происходит при переходе ядра с более низкого энергетического уровня на более высокий. Прп этом имеют место два типа релаксационных процессов спин-решеточная релаксация с временем 7 а спин-спиновая с временем Гг. Явлення первого типа охватывают различные процессы обмена энергией между спиновой системой и решеткой, объединяющей все остальные (кроме спнновых) степени свободы. Ti может достигать нескольких часов и зависит от типа ядер и характера молекулярного движения. Спин-спнновая релаксация заключается в обмене энергией между спинами ядер одного типа. Время спин-спиновой релаксации всегда меньше Т[. Оба релаксационных процесса влияют иа время 12в [c.128]

    Поперечная и продольная релаксации индуцируются процессами, происходящими на молекулярном уровне. Они отражают взаимодействие ядерного спина с его окружением. Скорости релаксации пропорциональны квадрату величины, характеризующей эти взаимодействия. В случае спин-решеточной релаксации, при которой осуществляется обмен энергией с окружением, эти взаимодействия оказываются промодулированными во времени, что происходит за счет взаимодействия спинов с флуктуирующими магнитными полями, вызывающими переходы между стационарными состояниями спиновой системы на частоте Ш/. Те же процессы, которые вызывают спин-решеточную релаксацию, ведут и к спин-спиновой релаксации, поскольку при спин-решеточной релаксации одновременно разрушается фазовая когерентность прецессии отдельных спинов. В то же время временная модуляция взаимодействий не является обязательным условием для разрушения фазовой когерентности процессы, не модулированные во времени, представляют собой дополнительный канал поперечной релаксации. [c.35]


Смотреть страницы где упоминается термин Система спиновая энергии переходов: [c.73]    [c.281]    [c.237]    [c.92]    [c.64]    [c.204]    [c.725]    [c.132]    [c.190]    [c.322]    [c.368]    [c.298]    [c.521]    [c.46]    [c.239]    [c.170]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Система спиновая



© 2025 chem21.info Реклама на сайте