Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота, производство с применением высокого давления

    Одним из первых применений недеструктивных процессов было производство устойчивых к смолообразованию высокооктановых авиационных бензинов. Гидрированию подвергались диизобутилен и соответствующие содимеры, полученные при полимеризации бутенов [198]. Полимеризация проводилась при воздействии сначала холодной или горячей серной кислотой, а затем крепкой фосфорной кислотой. Фосфорная кислота высушивалась на кизельгуре и т. д. Гидрирование происходило при мягких условиях с легко отравляющимися серой никелевыми катализаторами или, ири более высоких температуре и давлении, — с более стойкими к сере катализаторами. Продуктами гидрирования были высоко-разветвленные октаны, очень близкие к изооктану. [c.94]


    В 1878 г. Вертело сделал открытие, что электролизом растворов серной кислоты можно получать нероксодисерную кислоту, которая легко подвергается гидролизу в растворе с образованием перекиси водорода и серной кислоты. В 1885 г. Анрио показал, что перекись водорода можно выпарить из гидролизованного раствора, если поддерживать достаточно низкую температуру при работе под уменьшенным давлением. Эти открытия привели к тому, что в 1909 г. было начато промышленное производство перекиси водорода электрохимическими методами [1], которые позволяли получать сравнительно чистую и, следовательно, весьма устойчивую перекись водорода значительно более высокой концентрации, чем раньше. Эти методы почти полностью вытеснили способ производства из перекиси бария, который в настоящее время применяется в сравнительно небольшом масштабе лишь там, где имеется на рынке возможность сбыта получающегося в качестве побочного продукта сернокислого бария. Е) настоящее время перекись водорода получают главным образом электрохимическими методами через пероксодисульфат, однако в США недавно начато промышленное производство перекиси водорода, основанное на самоокислении органических веществ, а некоторые другие методы изучены с точки зрения потенциальной возможности промышленного применения и доведены по меньшей мере до стадии опытной установки. [c.34]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]


    При производстве изопропилового спирта с применением крепкой серной кислоты абсорбция пропилена проводится в колонном аппарате при давлении 8—10 атм, температуре 20° С с применением 92% кислоты. Число тарелок в абсорбционной колонне 8. В отличие от сернокислотной гидратации этилена на каждую из этих тарелок вводится слой растворителя (масла). что облегчает поглощение пропилена и позволяет работать с менее концентрированными фракциями пропилена. Линейные скорости подачи газа составляют 2,4 м/мин. При более высоких линейных скоростях абсорбция также идет полностью, однако при этом затрудняется отвод тепла. [c.138]

    Производство минеральных удобрений связано с потреблением различных минеральных кислот (серной, азотной, фосфорной и др.), щелочей (соды, аммиака и др.), с применением высоких температур и давлений (получение фосфора, карбамида, термофосфатов и плавленых фосфатов), с возможным выделением в атмосферу рабочего пространства вредных газов и паров (фтористые газы, аммиак, пары азотной кислоты и т. д.). Поэтому при эксплуатации действующих и строительстве новых заводов, производящих минеральные удобрения, большое внимание должно уделяться технике безопасности и охране труда работающих на производстве. [c.132]

    Ведение контактного процесса при повышенном давлении. Контактный процесс осуш ествляют при давлении, близком к атмосферному. На платиновых и ванадиевых катализаторах в этих условиях может быть достигнуто практически полное окисление сернистого газа и, следовательно, нет необходимости в применении повышенного давления. Однако применение высоких давлений в контактном производстве серной кислоты представляет несомненный интерес, так как позволяет значительно интенсифицировать процесс. Действительно, время соприкосновения газа с катализатором, еобходимос для достижения заданной степени контактирования, определяется в случае контактных масс уравнением [c.454]

    Применение повышенного давления в производстве серной кислоты дает следующие преимущества уменьшаются объемы перерабатываемого газа, а следовательно, и размеры аппаратов сдвигается равйовесие основных реакций — окисления сернистого ангидрида и абсорбции серного ангидрида в направлении более высоких равновесных значений повышается надежность и обеспечивается длительная устойчивая работа агрегата, так как ужесточаются требования к качеству оборудования и монтажа агрегата. [c.222]

    Высокая теплостойкость фторкаучуков в сочетании с достаточно хорощей механической прочностью, сопротивлением действию ряда агрессивных сред — масел, органических жидкостей, сильных окислителей — определяет их применение в производстве различных резиновых технических изделий. Из фторкаучуков изготовляются уплотнительные и герметизирующие детали, предназначенные для работы в маслах и топливах при температурах 200° С и выше, в том числе манжеты для насосов акселераторов и карбюраторов клапаны для работы в контакте с толуолом, ксилолом, углеводородными газами прокладки и уплотнения, работающие в контакте с кремннйорганическими смазками, кольцевые уплотнители для центрифуг, применяемых для обработки хлорированных углеводородов уплотнители топливных систем, работающие при высоких температурах уплотнительные кольца на ниппелях установок для глубинного бурения прокладки для паропроводов высокого давления уплотнители в насосах, перекачивающих концентрированные соляную и серную кислоты, расплавленную серу и ряд других веществ. [c.153]

    Судя по вязкости водных растворов, они должны принадлежать к типичным цолиэлектролитам, гибкие цепи которых при обычных концентрациях вытянуты, а при высоких (или в присутствии поваренной соли) свернуты в спирали. Низромолекулярные компоненты агрегируют и образуют мицеллы. Считают, что лигносульфонаты занимают промежуточное положение между полиэлектролитами и тй-пичными коллоидными электролитами [3, 45]. Очищенные от солей двухвалентных металлов или модифицированные обработкой аммиаком под давлением [46 ] сульфитные щелока в виде смеси натриевых (ЛСН) и аммониевых солей используются как анионактивные диспергирующие агенты в производстве и при применении выпускных форм кубовых и дисперсных красителей [5, И, 14, 22, 47]. Для очистки водных растворов ССБ применяют осаждение содой с последующим удалением карбоната кальция и легколетучих примесей [48], упариванием и отделением осадка сульфита кальция фильтрованием [49] затем обрабатывают серной кислотой, сульфатом натрия, известью [50] с отделением гипса или сульфата кальция. Фильтрат сушат в распылительной сушилке форсуночного типа при температуре входящих газов 205—260 и 120—125 °С на выходе 47] другие авторы [51] считают допустимой температуру газов на входе до 500 °С, а на выходе 135 °С. [c.50]

    Наиболее эффективные направления развития производства серной кислоты связаны с повышением концентрации оксида серы (IV), проведением процессов под давлением, применением технического кислорода на стадии обжига и окисления ЗОг, использованием высокоинтенсивных реакторов с кипящими слоями, новых катализаторов, организацией производства по новым схемам, в том числе с рециркуляцией газовой смеси. Между этими факторами существует следующая причинно-следственная связь. Повышение колцентрации ЗОг пропорционально увеличивает производительность контактного и абсорбционного отделений при снижении энергозатрат и потерь теплоты. Однако окисление высококонцентрированного газа возможно лишь в реакторах с кипящими слоями катализатора, работающих при изотермическом температурном режиме. Пылепропускная способность кипящего слоя позволяет резко упростить систему очистки газа, а его высокие теплотехнические свойства обеспечивают наиболее полное использование энергоресурсов производства. Получение же концентрированного газа возможно лишь при обогащении воздушного дутья кислородом или полной замене воздуха техническим кислородом. В последнем случае интенсивность основных аппаратов может быть увеличена в 5—7 раз и появляется возможность замены многостадийных схем на одностадийную с циркуляцией непрореагировавшего за один проход газа, что пезг- о уменьшает металлоем- [c.192]


    Имеется большая номенклатура материалов, удовлетворяющая требованиям коррозионной стопкос ги в среде влажного и сухого хлора, растворов хлорида натрия и едкого натра, серной и соляной кислот. Но многие эти материалы не могут быть рекомендованы в качестве конструкционных для изготовления оборудования и машин производства каустической соды и хлора, находящи.хся под давлением, вследствие низких механических свойств (стекло, керамика, поливинилхлорид и многие другие неметаллические материалы). В производстве каустической соды и хлора их применяют, главным образом, для защиты от коррозии оборудования и трубопроводов, изготовленных из углеродистой стали. В настоящее время в производстве каустической соды и хлора ниходят широкое применение оборудование, трубопроводы и арматура, изготовленные из стеклопластиков, обладающих высокой стойкостью к агрессивному воздействию влажного и сухого хлора, растворов хлорида натрия, серной и соляной кислот. Из стеклопластиков изготавливают крышки и многие другие детали электролизеров с диафрагмой и моно-и биполярным включением электродов, детали мембранных электролизеров, колонное и емкостное оборудование, соприкасающееся с влажным хлором и растворами гипохлорита натрия иедкого натра, коллекторы трубопроводов для влажного хлора, рассола хлорида натрия, серной и соляной кислот и т. д. [c.105]


Смотреть страницы где упоминается термин Серная кислота, производство с применением высокого давления: [c.261]    [c.3]    [c.196]   
Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Серная кислота применение

Серная кислота производство



© 2025 chem21.info Реклама на сайте