Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые катализаторы

    В присутствии никелевого катализатора (например окись никеля, [c.100]

    На первой ступени конверсия природного газа осуществляется в смеси с водяным паром на никелевом катализаторе при давлении около 3,5 МПа (35 кгс/см ) и температуре 824 °С в трубчатых печах до остаточного содержания метана 11%. Дымовые газы направляются в систему теплоиспользующей аппаратуры для подогрева парогазовой смеси, технологического воздуха, питательной котловой воды, топливного газа и получения пара высокого давления, после чего они охлаждаются и выбрасываются в атмосферу. [c.13]


    При нагревании кетонов, полученных из головных погонов , с аммиаком и водородом над никелевым катализатором образуются амины. [c.473]

    Синтез на никелевых катализаторах ведется практически только при нормальном давлении, так как при повышенном давлении резко усили-1 ается образование карбонилов. На железном и кобальтовом катализаторах можно работать без образования карбонилов при давлениях до 20 ат. Для рутения необходимо давление 100 ат, если только хотят получить выходы, соответствующие получаемым на кобальтовых или железных катализаторах при нормальном давлении или при 20 ат. [c.66]

    Результаты частичного гидрирования ацетилена в газе автотермического дегидрирования этана над хромо-никелевым катализатором [c.72]

    Гидрирование аренов изучали многие исследователи. Однако в стереоспецифическом аспекте эта реакция обсуждена еще недостаточно, так как большинство работ носит чисто препаративный характер. В основном изучено гидрирование ди- и полиалкилбензолов на платиновых и никелевых катализаторах. Оказалось, что в присутствии различных катализаторов наряду с цис-то-мером образуются транс-изомеры. Между тем, казалось бы, что простое присоединение шести атомов водорода к ароматическому ядру при его плоскостной адсорбции должно приводить исключительно к цис-форме. Поэтому основной интерес здесь представляют следующие вопросы как получаются транс-изомеры циклогексанового ряда, через какие промежуточные стадии идет их образование, имеет ли место десорбция (хотя бы частичная) этих промежуточных соединений в объем с последующей повторной адсорбцией на катализаторе или же все стадии проходят непосредственно в адсорбированном слое. [c.46]

    При, гидрировании бензола в циклогексан, если бензол не содержит сер нистых соединений, работают с никелевым катализатором. В противном случае применяют устойчивый против действия сернистых соединений комбини- рованпый катализатор, состоящий из сульфида никеля и сульфида вольфрама. [c.100]

    Выходящая из колонны 3 смесь кислородсодержащих соединений гидрируется далее нри 100—150° и 28—56 ат давления водорода над никелевым катализатором для получения спиртов. [c.156]

    Протеканию процесса благоприятствует использование некоторого количества водяного пара и никелевого катализатора. [c.78]

    Восстановлением кетонов, например, в присутствии никелевого катализатора получают вторичные спирты с количественным выходом, которые применяются для многих важных реакций. Этот метод представляет косвенный путь получения высокомолекулярных алифатических спиртов. [c.348]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]


    К очищенному газу в смесителе добавляют перегретый до 400 — 500 С водяной пар, и полученную парогазовую смесь подают в печь паровой конверсии. Конверсия углеводородов проводится при 800 — 900 °С и давлении 2,2 — 2,4 МПа в вертикальных трубчатых р( акторах, заполненных никелевым катализатором и размещенных в радиантной секции печи в несколько рядов и обогреваемых с двух СП орон теплом сжигания отопительного газа. Отопительный газ подогревают до 70— 100 °С, чтобы предотвратить конденсацию воды и /глеводородов в горелках. Дымовые газы с температурой 950— 1100 °С переходят из радиантной секции в конвекционную, где установ — лены подогреватель сырья и котел —утилизатор для производства и П( ре1 рева водяного пара. [c.164]

    Схема установки для конверсии метана водяным паром представлена на рис. V-1. Метан вместе с водяным паром поступает в трубы (из жаростойкой стали), заполненные зернистым никелевым катализатором. Снаружи трубы обогреваются сгорающими газами (в балансе не нужно учитывать эти газы.) [c.109]

    Конверсия углеводородов ведется при 800— 900 °С и 2,2—2,4 МПа над никелевым катализатором. Расход природного газа составляет 1,03—1,05 м на 1 м получаемого технического водорода расход водяного пара — от 0,60 до 0,66 м на 1 м сухого газа. [c.63]

    Некоторые примеси, содержащиеся в исходном веществе, могут оказывать сильное влияние на реакцию гидрирования. Так, например, следы азотистых или галоидных соединений могут ингибировать реакцию вследствие отравления никелевого катализатора. Этим еще раз подчеркивается важность тщательной очистки всех исходных веществ. [c.508]

    СН< -Ь НзО —> СО + ЗНз (1 800 °С, никелевый катализатор) вариант II — сжигание метана в смеси кислорода и водяных паров 2СН, -f О. + Н2О —> СО2 + СО + 5Н2 [c.55]

    Процесс проходит в присутствии никелевого катализатора, которым заполняются трубы, размещенные в огнеупорной камере. В межтрубном пространстве сгорает газ. В результате интенсивного подвода теплоты температура реагирующей смеси в трубах поддерживается на уровне 700—750 °С. [c.400]

    Таким образом, в настоящее время, получение первичных спиртов, исходя из альдегидов, возможно посредством их гидрирования тремя способами. Во-первых, гидрированием альдегидов в газовой фазе в присутствии избытка водорода и, например, никелевого катализатора без давления или под небольшим давлением гетерогенно-каталитической реакцией. Во-вторых, в дополнение к реакции Ройлена можно по окончании образования [c.214]

    Даже в условиях гидрирования над алюмомедным катализатором при 325° С наблюдались значительные отложения углерода. В этих условиях индан разлагается на 60% е образованием 57 молярных процентов толуола, 33 молярных процентов н-пропилбензола, 3-молярных процентов бензола и, кроме того, углерода и производных циклогексана. Адкинс и Дэвис [1] нашли, что тетралин и аналогичные гидроароматические углеводороды дегидрировались при нагревании над никелевыми катализаторами и в присутствии бензола в качестве акцептора водорода. Соединения серы также эффективно способствовали переносу водорода. [c.112]

    Поликетоны посредством гидрирующего амидирования (обработки большим избытком аммиака в присутствии никелевого катализатора и водорода при 150—200° и давлении 600 ат) превращаются в нолиамины с очень интересными свойствами [73]. [c.226]

    Каталитическое восстановление нитропарафинов можно проводить с катализатором по Адамсу [49], причем специально для низкомолекулярных нитронарафинов удобно проводить процесс в газовой фазе, используя в качестве катализаторов никель, медь и нлатину [50]. Весьма пригодным катализатором особенно для восстановления в промышленном масштабе оказался никелевый катализатор Ренея [51]. Этот катализатор успешно применялся также для восстановления нитроспиртов в аминоспирты [52]. [c.275]

    Давление, необходимое для гладкого восстановления, должно быть установлено в каждом отдельном случае. Высокие качества показывает никелевый катализатор Ренея, (приготовленный по методу Коверта и Адкинса [208]. Приводим кратко описание этого метода сплавляют равные части никеля и алюминия 300 г сплава, растертого в тонкий порошок, постепенно присыпают в течение 2—3 час. в раствор 300 г [c.342]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]


    Из жидких алифатических углеводородов наилучшим исходным материалом для сульфохлорирования являются н-парафины типа н-додекана и октадекана. Правда, и средние члены гомологического ряда, как н-гексан и н-октан, реагируют легко и сравнительно однозначно. Однако подобные углеводороды не являются подходящим промышленным сырьем, так как в чистом виде они мало доступны и слишком дороги. Они могут быть получены из соответствующих спиртов нормального строения каталитической дегидратацией последних в олефины, которые з.атем под давлением гидрируют, например в присутствии никелевого катализатора, в соответствующие парафины, или восстановлением спиртов нормального строения в одну ступень в насыщенные углеводороды, которое осуществляется, например, пропуска-нояем их в смеси с водородом над сульфидными катализаторами, лучше всего над смесями сульфидов никеля и вольфрама при температуре 300—320° и давлении 200 ат. [c.396]

    Проведение исчерпывающего гидрирования не вызывает затруднений, так как большинство ненасыщенных углеводородов нацело гидрируется под давлением водорода 70—140 ат в присутствии никеля на кизельгуре при 175—200° или же в присутствии никелевого катализатора Ренея при 100—125°. [c.507]

    Такую кетонизацию можно легко провести по методу Грюна в присутствии железа как катализатора. Для этой цели смесь жтрньгх кислот нагревают до 300° под давлением в присутствии железного порошка в результате отщепления углекислоты и воды образуются смеси кетонов с кетогруппой, расположенной в середине цепи. Эти кетоны получают с хорошими выходами они имеют карбонильное число 235—240 и гладко восстанавливаются над никелевыми катализаторами в соответствующие спирты при 100—130° и 100 ат. Последние поедставляют смеси вторичных спиртов с 10—20 атомами углерода с температурой плавления около 30°, гидроксильные группы которых частично расположены точно в середине молекулы. [c.472]

    Ароматизацией катализом новобогатинского (эмбенского) бензина Зелинский и Шуйкин [5] обнаружили, что в присутствии платинированного угля объемный процент ароматических углеводородов можно увеличить для отдельных фракций от 6 до 19%, а применением никелевого катализатора прирост ароматики можно повысить еще больше. [c.185]

    Паровая конверсия метана с приемлемой скоростью и глубиной превращения протекает без катализатора при 1250—1350 °С. Катализаторы конверсии углеводородов предназначены не только д/я ускорения основной реакции, но и для подавления побочных реакций пиролиза путем снижения температуры конверсии до 800 — 9СЮ °С. Как наиболее активные и эффективные катализаторы конверсии метана признаны никелевые, нанесенные на термос — тс йкие и механически прочные носители с развитой поверхностью ти па оксида алюминия. С целью интенсификации реакций газифи — Кс1ции углерода в никелевые катализаторы в небольших количествах обычно вводят щелочные добавки (оксиды Са и Мд). [c.158]

    Никелевый катализатор Ренея. Поставляется в виде твердой пасты. Как только катализатор высыхает и вступает в соприкосновение с кислородом (воздухом), он воспламеняется. Поэтому во время хранения и транспортировки катализатор должен быть покрыт слоем воды. Средство тушения — вода. [c.90]

    Воспламеняемость при высыхании и соприкосновении с воздухом (кислородом) применяемого в производстве никелевого катализатора Ренея. [c.91]

    Применяемая в настояш ее время технология per ламентирует некоторые требования к качеству сырья, в частности по содержанию в нем соединений серы (в газах до 100 мг/м , в бензинах до 0,3 мг/кг), отравляющих как никелевый катализатор паровой конверсии углеводородов, так и цинкмедный катализатор низкотемпературной конверсии оксида углерода. Присутствие в сырье непредельных углеводородов вызывает образование углеродистых отложений на катализаторе паровой конверсии углеводородов. [c.62]

    Гидрирование ароматических соединений. Все моноциклические ароматические углеводороды гидрируются каталитическим путем до соответствующих никлогексанов с высоким выходом и почти без образования побочных продуктов. Чаще всего применяют никелевые катализаторы. [c.463]

    С. Декарбонилирование. В некоторых случаях необходимо удаление ил промежуточного продукта и процессе ароматизации функциональной группы такой, как альдегидная (—СНО) или спиртовая (—СНаОН). Образование бензола при пропускании бензилового спирта над нагретым никелевым катализатором известно давно [27] изучалось также разложение неароматических спиртов [1] и альдегидов [32] в углеводороды путем отщепления водорода, либо окиси углерода, либо того и другого. Если разлагаемый промежуточный продукт является циклогексильным или циклогексенильным производным, как непредельный альдегид, полученный в реакции Ди-пьса-Лльдера, то декарбоксилирование сопровождается, по-видимому, дегидрогенизацией с образованием аромч-тического углеводорода в одну стадию. Сырой продукт может содержать некоторое количество побочных продуктов, включая циклоолефины, которые повышают содержание ароматического углеводорода при его рециркуляции над дегидрирующим катализатором. [c.489]

    Для проведения реакции избирательного гидрирования требуется избирательный катализатор, чтобы избежать гидрирования ароматического кольца. Обычно наи лучшим катализатором является хромит меди при 100—175°, хотя никелевый катализатор Ренея может быть использован для этой цели при 25—75°. [c.507]

    Иа схемах С означает прямую цепь, содержащую п атомов углерода с соответствующим числом атомов водорода, требующихся для насыщения, N1 (К) означает катализатор для гидрирования — никель на кизельгуре, а N1 (г) — никелевый катализатор Ренея. [c.510]

    Добавление 1-нафтилмагнийбромида к очищенному хлоругольному эфиру при температуре от О до 5 дает этиловый эфир 1-нафтойной кислоты. Необходимо проводить реакцию при низкой температуре, так как реактив Гриньяра способен вступать в дальнейшую реакцию с образовавшимся сложным эфиром. Этиловый эфир 1-нафтойной кислоты очищают фракционной перегонкой чистый препарат подвергают гидрированию. Никель иа кизельгуре и никелевый катализатор Ренея позволяют проводить избирательное гидрирование этого эфира при различных условиях [21], причем образуются как ас-, так и аг-эфиры. [c.513]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]


Смотреть страницы где упоминается термин Никелевые катализаторы: [c.29]    [c.48]    [c.78]    [c.336]    [c.336]    [c.336]    [c.355]    [c.164]    [c.23]    [c.487]    [c.510]    [c.175]    [c.175]   
Смотреть главы в:

Промышленные каталитические процессы и эффективные катализаторы -> Никелевые катализаторы

Промышленные каталитические процессы и эффективные катализаторы -> Никелевые катализаторы


Методы восстановления органических соединений (1960) -- [ c.309 ]

Препаративная органическая химия (1959) -- [ c.523 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.377 ]

Общая химическая технология неорганических веществ 1964 (1964) -- [ c.175 , c.239 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.175 , c.239 ]

Курс технологии связанного азота (1969) -- [ c.127 , c.129 , c.130 ]

Технология связанного азота (1966) -- [ c.24 , c.35 , c.51 ]

Синтезы на основе окиси углерода (1971) -- [ c.73 , c.117 , c.176 ]

Методы органической химии Том 2 Издание 2 (1967) -- [ c.274 , c.275 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.274 , c.275 ]

Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте