Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкостная хроматография при высоких давлениях применение ЖЖХ

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]


    В работах [16] описано применение жидкостной хроматографии высокого давления для определения полициклических ароматических углеводородов в дыме и воде, в выхлопных газах автомашин и табачном дыме. Метод особенно эффективен для анализа каменноугольных смол, продуктов углехимии и нефтехимии [17]. [c.324]

    В жидкостной хроматографии высокого давления нашли применение пористые полимерные сорбенты на основе сополимеров полистирола и дивинилбензола [119—121]. Эти сорбенты характеризуются большой величиной удельной поверхности ( 800 жесткой структурой и хорошей [c.21]

    Применение гель-фильтрационных приемов позволило обнаружить порфирины повышенной молекулярной массы, что было интерпретировано как существование димеров [80]. Основная масса порфиринов нефти незначительно различается по времени выхода и не может быть эффективно фракционирована этим методом. Можно констатировать, что до появления работ по разделению ванадилпорфиринов тонкослойной хроматографией [,61] и исследований по применению жидкостной хроматографии высокого давления [77, 89] удовлетворительных методов разделения нефтяных металлопорфиринов не существовало. [c.324]

    Е-Х для жидкостной хроматографии, либо марки 51Ь-Х(НР) для хроматографии в системе жидкость—жидкость). На рис. 28.8 представлены результаты разделения трех кортикостероидов и андростендиона с применением жидкостной адсорбционной хроматографии высокого давления на силикагеле марки 81Е-Х, в то время как в табл. 28.4 приведены времена удерживания отдельных кортикостероидов и прогестерона, полученные с применением жидкостной хроматографии высокого давления с обращенными фазами на силикагеле марки SIL-X(RP). [c.239]

    Газо-жидкостная хроматография обладает двумя преимуществами по сравнению с обычной распределительной хроматографией (в системе жидкость—жидкость). Во-первых, скорость распределения вещества между подвижной газовой фазой и стационарной жидкой фазой (в виде пленки) намного выше, чем в случае жидкой подвижной фазы. Эффективность разделения в связи с этим существенно повышается, так как процесс может быть проведен с достаточно высокой скоростью даже при использовании очень длинных колонок. Во-вторых, могут быть разработаны (во многих случаях это уже весьма остроумно сделано) чувствительные и точные методы детектирования и автоматической регистрации фракций газового элюата. Однако применение метода ограничено устойчивостью разделяемых веществ при температурах, необходимых для создания достаточного давления пара. В одной из недавних работ [17] было показано, что на усовершенствованных [c.23]


    Благодаря внедрению новой техники, основанной на использовании сдвоенных колонок, а также совершенствованию приборного обеспечения, сверхкритическая хроматография (СКХ) переходит сейчас в разряд рутинных методов анализа, обладающих существенными преимуществами перед традиционной жидкостной хроматографией высокого давления в плане эффективности разделения и экспрессности. Более того, это метод не требует применения экзотических детекторов разделяемые компоненты можно регистрировать с помощью таких стандартных детекторов для газовой хроматографии, как ТИД и ЭЗД. [c.220]

    Применение хроматографических методов (бумажная, тонкослойная, газожидкостная и жидкостная хроматография высокого давления), отличающихся высокой эффективностью разделения и надежностью идентификации, как и в других областях структурного анализа, например протеинов, полисахаридов и липидов [1], обычно дает очень хорошие результаты. Хроматографические методы определения продуктов химической деструкции красителей позволяют иметь дело с микро- или даже ультрамикроколичествами анализируемых соединений и значительно упрощают и ускоряют всю экспериментальную работу. Успешный результат анализа зависит от следующих факторов. [c.295]

    Носитель неподвижной фазы должен обладать достаточно развитой поверхностью, быть химически инертным, прочно удерживать на своей поверхности жидкую фазу и не растворяться в применяемых растворителях. В качестве носителей используют вещества различной химической природы гидрофильные носители — силикагель, целлюлоза и др. и гидрофобные — фторопласт, тефлон и другие полимеры. Успешно развивается применение в жидкостно-жидкостной распределительной хроматографии высокого давления. [c.348]

    В последние годы появились приборы, позволяющие проводить разделение соединений методом хроматографии под высоким давлением. В этом случае неподвижную фазу помещают в узкую стальную колонку, в которую затем под давлением нагнетают подвижную жидкую фазу. Применение высокого давления позволяет использовать значительно более длинные колонки и одновременно существенно сокращать время разделения. Метод универсален, поскольку может применяться во многи видах хроматографического разделения адсорбционной хроматографии, распределении в системе жидкость—жидкость, а также ионообменной и гель-проникаю-щей хроматографии. Оборудование для жидкостной хроматографии под давлением включает обычно одну или несколько детекторных систем для непрерывной регистрации выхода элюата из колонки. [c.105]

    В настоящее время колоночная хроматография вновь приобретает свое прежнее значение благодаря применению новых, более совершенных детекторов и методов жидкостной хроматографии под высоким давлением [20]. Этому способствовало также развитие теории газовой хроматографии и заимствование уже разработанных приемов из других методов. [c.354]

    Хроматография. Различают жидкостную хроматографию (колоночная и тонкослойная, ТСХ) и газовую хроматографию (ГХ) [5]. Колоночная и тонкослойная хроматография применяются для разделения твердых веществ и масел с высоким давлением нара, однако эти методы неприемлемы для низкокипящих жидкостей. Газовая хроматография [7] используется для разделения низкокипящих веществ. Применение же стеклянных капиллярных колонок позволяет исследовать этим методом и вещества с большой относительной молекулярной массой (М 1000). [c.46]

    Возникновение новых методов разделения и их применение для решения важных проблем каждый раз способствовали развитию химической науки. Так произошло в начале 1970-х гг., когда профессор Роберт Б. Вудвард из Гарвардского университета впервые использовал новый в то время метод современной жидкостной хроматографии (ЖХ) в работах по синтезу витамина В,2 [2]. В то время даже наиболее опытные химики-синтетики столкнулись с необходимостью решения проблемы разделения. Профессор Вудвард так описывал сложившееся положение ...в настоящее время перед нами возникла опасность потерять стереохимические особенности наших веществ в упомянутых трех центрах. И это ставит перед нами сложную задачу разделения... Если на стадии гептаметилбисноркобиринатов оставить неопределенной стереохимию трех упомянутых центров, то затем все равно возникнет проблема стереохимии, и конечно, связанная с ней проблема разделения очень близких по свойствам молекул [3]. Решение возникших проблем разделения стало возможным при использовании ЖХ. Процитируем опять слова Вудварда Здесь я должен сказать, что решающую роль во всей нашей дальнейшей работе имело использование жидкостной хроматографии высокого давления для очень трудных разделений, с которыми мы столкнулись, начиная с этого момента. Возможности метода жидкостной хроматографии высокого давления с трудом может оценить химик, который не использовал этот метод этот метод является относительно простым, и, я уверен, он станет необходимым в каждой лаборатории органической химии в очень недалеком будущем [4]. Очень скоро метод ЖХ стал основным в исследованиях профессора Вудварда. Степень его использования как стандартного метода видна из следующего высказывания Данная кобириновая кислота была [c.9]


    Этот недавно введенный метод хроматографии вновь выдвинул на передний край хроматографию на колонках — самую старую форму аналитического искусства. Основное достижение, благодаря которому стало возможным применение нового метода, — это технология получения частиц, устойчивых к высокому давлению и имеющих одинаковый диаметр меиее 50 мкм. Более ранние типы частиц обычно имеют твердый центр, например из стекла, и тонкий пористый наружный слой, например из кремнезема благодаря небольшому размеру и большой площади поверхности этих частиц обеспечивалась высокая эффективность адсорбционной хроматографии. Если частицы покрыты подходящей неподвижной фазой, высокоэффективную жидкостную хроматографию можно использовать как метод распределения. [c.419]

    При использовании методов расчета, аналогичных описанным в разделе Газовая хроматография , методика высокого давления дает возможность получать более точные результаты и поэтому чрезвычайно удобна для количественных определений. Эта методика требует мало времени и используется для осуществления многих высокоэффективных разделений, однако для ее применения нужны специальные приборы и во многих случаях дорогостоящие материалы для заполнения колонок. Потенциальное преимущество этой методики перед газовой хроматографией состоит в том, что летучесть п термостабильность, факторы столь важные для последней, не имеют никакого значения для жидкостной хроматографии. К ее недостаткам в настоящее время относится отсутствие универсальной детекторной системы. [c.421]

    Для работы на современных аналитических колонках длиной 50—250 мм и внутренним диаметром 2—10 мм, заполненных сорбентом с диаметром частиц 5—15 мкм, при применении растворителей средней вязкости и при комнатной температуре требуется давление элюента от 0,5 до 30 МПа. При использовании сорбентов с диаметром частиц менее 3 мкм и колонок длиной более 00 мм может потребоваться создание более высоких давлений, например до 50—70 МПа. Применение высоких давлений в жидкостной хроматографии обусловливает повышенные требования к конструкциям и характеристикам насосов, клапанов, сальников, двигателей, дозаторов, колонок и соединительных линий. [c.256]

    Метод жидкостной хроматографии, который в обычном колоночном оформлении считался медленным, имеет свои преимущества, а именно возможность работы с конденсированными фазами при высоких температурах, что очень важно при биохимических исследованиях. Ускорение анализа достигается использованием колонок малого сечения и применением высоких давлений и высокодисперсных сорбентов. Жидкостная хроматография стала успешно конкурировать с другими, разновидностями метода. [c.5]

    Разделение каких-либо производных аминокислот методом газо-жидкостной хроматографии при заданных условиях зависит как от различия в их точках кипения, так и от отклонения их растворов в стационарном растворителе от идеальных. В случае неполярных жидких фаз, подобных высокополимерному углеводороду типа апиезона или силиконовых масел, которые не вызывают поляризации анализируемых соединений, последние разделяются главным образом в соответствии с их точками кипения. Поэтому такие соединения, как структурные изомеры лейцина и изолейцина, близкие по температурам кипения, отделяются друг от друга с трудом. С другой стороны, разделение компонентов на полярной жидкой фазе определяется не только давлением их паров, но и специфическим взаимодействием молекул растворителя и разделяемых веществ. С этой точки зрения применение полярных стационарных жидких фаз является более перспективным, так как должно одновременно обеспечивать высокую селективность разделения летучих производных аминокислот различных классов наряду с высокой эффективностью разделения группы аминокислот, принадлежащих к одному гомологическому ряду. Кроме того, использование полярной фазы приводит к подавлению адсорбционных свойств твердого носителя и позволяет хроматографировать высококипящие производные аминокислот на колонках с низким содержанием стационарной жидкой фазы. Последнее связано со снижением температуры колонки и, следовательно, увеличением эффективности хроматографического разделения. [c.257]

    Отделенные от полимера добавки и примеси или минерализованный полимер. можно анализировать непосредственно, или предварительно разделив низкомолекулярные вещества каким-либо подходящим методом. В случае органических добавок для этих целей в основном используют различные виды хроматографии. Наибольшее применение находит жидкостная хроматография. Это объясняется тем, что условия разделения в ней более мягкие, чем в газожидкостной хроматографии. Применение высоких температур в последней, которое вызвано низким давлением паров большинства органических добавок, создает возможность разложения добавок в процессе хроматографирования. [c.237]

    Жидкостная адсорбционная хроматография часто применяется в органической химии в технологии и анализе. Этим методом весьма успешно изучают, например, состав нефти, керосина, углеводородов, эффективно разделяют транс- и цыс-изомеры, алкалоиды и т. д. Особенно большую роль она сыграла в разработке методов разделения, анализа и исследования нелетучих и нестабильных соединений. Очень эффективно применение жидкостной хроматографии при высоком давлении для разделения неполярных соединений и соединений со средней полярностью. [c.342]

    Эта книга вышла в свет в период, когда многие исследователи-аналитики рассматривали тонкослойную хроматографию (ТСХ) как один из второстепенных методов. Другая довольно многочисленная группа ученых занималась проблемами высокоэффективной жидкостной колоночной хроматографии (ВЭЖКХ), называемой иногда не совсем правильно жидкостной хроматографией высокого давления. В этом методе колонки для разделения редко используются при оптимальных условиях. Они характеризуются эффективностью, значительно превышающей 1000 теоретических тарелок. Применение ВЭКЖХ подчас ограничено необратимой адсорбцией компонентов анализируемых смесей. Большинство недостатков этого метода можно устранить с помощью ТСХ. [c.9]

    В жидкостной хроматографии высокого давления нашли применение пористые полимерные сорбенты на основе сополимеров полистирола и дивинилбензола [119—121]. Эти сорбенты характеризуются большой величиной удельной поверхности ( 800ж г), жесткой структурой и хорошей адсорбционной способностью. Они использованы, в частности, для разделения органических оснований [120], бензола, бензойной кислоты и ее эфиров, фенола, анизола, метилзамещенных фенолов и анилинов [121]. [c.21]

    Управление пищевых продуктов и лекарств (FDA) проводит анализы каждой подлежащей освидетельствованию партии красителей с целью проверки ее соответствия требованиям, установленным Кодексом федеральных законов. Для определения содержания основного продукта, примесей, сопутствующих красителей, неорганических солей, тяжелых металлов и т.п. используются такие аналитические методы, как ИК-, видимая и УФ-снектрофотомет-рия, титриметрия, спектроденситометрия, спектрометрия рентгеновского излучения, колоночная, газовая, тонкослойная и жидкостная хроматография высокого давления. В зависимости от результатов анализа партия красителя может быть признана либо пригодной для выдачи свидетельства (сертификата), либо непригодной. Сертификат дает право продавать продукт для обусловленных областей применения. [c.462]

    Хроматограмма на рис. 12.12 иллюстрирует применение жидкостной хроматографии высокого разрешения для анализа поглощающих в УФ-области компонентов (таких, как составляющие нуклеиновые кислоты) мочи. Хроматографирование проводилось на колонке с сильноосновной анионообменной смолой (размер частиц 12—15 мкм) при градиентном элюировании. В качестве стартового элюента использовался 0,015 М раствор ацетата натрия с pH 4,4. К нему добавляли градиентную смесь 6,0 М ацетата натрия с pH 4,4. Линейный градиент создавался через 30 мин после ввода пробы и поддерживался первые 24 ч. После этого от 24 до 30 ч подавался неградиентный элюент конечной концентрации 6,0 моль/л. Объемная скорость подвижной фазы составляла 8 мл/ч при давлении на входе от 70 до ПО атм. Первые 4 ч в колонке поддерживалась температура 25 °С, затем ее повышали. С помощью петли для образца р колонку вводилось 200 мкл необработанной мочи и за 30-часово  [c.311]

    В распределительной хроматографии неподвижная фаза должна быть нерастворима в подвижной фазе и распределена в виде тонкой пленки на носителе. Для создания покрытия в виде тонкой пленки и исключения уноса фазы она может быть химически связана с поверхностью твердого носителя. Адсорбенты, применяемые в твердо-жидвостной хроматографии, для исключения необратимой адсорбции и образования хвостов у пиков должны обладать однородной поверхностью. Ионообменные смолы, применяемые для заполнения колонок в ионообменной хроматографии, должны быть достаточно структурированными для исключения сжатия при высоких давлениях. Для работы при высоких давлениях в эксклюзионной хроматографии используют жесткие гели либо стеклянные шарики. Требования к разделяющей способности и скорости разделения аналогичны тем, что и в высокоэффективной жидкостной хроматографии. Высокая производительность колонки достигается при увеличении количества нанесенной неподвижной жидкой фазы и поверхности носителя. В препаративной хроматографии часто используют пористые гели из-за их большой емкости, однако высокая сжимаемость ограничивает их применение вследствие возможных перепадов давления на колонке. [c.55]

    Одной из ее модификаций является хроматография, основанная на гидрофобном взаимодействии носителя (фенил- или октилсефароза) с соответствующими неполярными аминокислотными радикалами белковых молекул. Применение эффективных сорбентов (различные производные силикагеля) и высокого давления при элюировании с них белков привело к возникновению ряда вариантов жидкостной хроматографии высокого разрешения. [c.30]

    Благодаря высокой чувствительности детекторов, применяемых в современных жидкостных хроматографах, для анализа достаточно нескольких микролитров вещества. Разделение осуществляется в короткие промежутки времени за счет использования колонок малых размеров и высоких скоростей элюирования (давления на входе в колонку до нескольких сотен атмосфер). При применении некоторых типов детекторов (спектрофотометрических, транспортных и др.) можно управлять ходом разделения путем регулируемого изменения температуры, давления или состава элюента в ходе анализа. Программируемое изменение состава элюента (градиентное элюирование) плодотворно реализовано, например, в уже отмечавшейся методике ЛЭАХ [123, 124] (см. рис. 1.1). На применении транспортного детектора и смеси трех растворителей в качестве подвижной фазы основан способ [c.33]

    При высоких давлениях в несколько сот атмосфер (1 атм л л 0,1 МПа) наблюдается резкое уменьшение времени и объема удерживания, что позволяет хроматографировать высококипящие малолетучие вещества при пониженных температурах. Этот метод называется флюидной хроматоерафией и занимает промежуточное положение между газовой и жидкостной хроматографиями. Сложность аппаратуры и техники эксперимента послужили причиной ограниченного применения данного метода. [c.135]

    Перемещение фронта растворителя при высоких температурах. Перемещение фронта растворителя происходит в соответствии с квадратичной зависимостью г, -1 даже при высоких температурах (вплоть до 180 С), что было показано Березкиным и Болотовым [274] при использовании н-гексадеканола в качестве растворителя. Единственным преимуществом использования температур выше точки плавления является то, что удается расширить диапазон применения растворителей, оказывающихся пригодными для жидкостной хроматографии, и достигать более высоких растворяющих способностей. (Дополнительно следует, по нашему. мнению, указать на улучшенную воспроизводимость процесса разделения, на простую консервацию хроматограмм и на возможность исследования процессов тех в "чистых" условиях, когда давлением паров подвижной фазы можно пренебречь. V.G.Berezkin, S.L.Bolotov/ZTalanta. 1987. V.34. Л о1. [c.60]

    В последние годы в литературе появились работы, в которых была показана принципиальная возможность анализа полимеров методом газовой хроматографии при использовании газов-носителей при высоких давлениях (см., например, [1]). Однако перспективы широкого аналитического использования этого метода остаются пока не выясненными. Возможно, что применение быстро развиваюш ейся жидкостной хроматографии для анализа полимерных систем останется наиболее простым и эффективным методом исследования высокомолекулярных соединений. В связи с нелетучестью полимеров при обычных условиях газо-хроматографического эксперимента газовая хроматография используется для анализа не высокомолекулярных соединений, а летучих продуктов их превращений. [c.193]

    В современной высокопроизводительной КЖХ широко используют микрозер-нистые (мельче 40—50 мкм), однородные по размеру частиц сорбенты, в первую очередь — микрозернистый силикагель. Такие насадки оказывают очень большое сопротивление потоку и поэтому требуют применения весьма высоких давлений. Так, на колонке с силикагелем Partisil-5 (номинальное зернение 5 мкм) при высоте колонки всего 15—20 см перепад давления достигает 40—80 кгс/см. Современные жидкостные хроматографы позволяют работать под давлением 100—200 (иногда до 500) кгс/см . На колонках типичных размеров (внутренний диаметр 1—2 мм, высота 10—50 см) такие давления обеспечивают скорости порядка 0,5—5 мл/мин, благодаря чему на получение хроматограммы затрачивается всего несколько минут (т. е. соизмеримо с газовой хроматографией). [c.7]

    Таким образом, на первый план снова выступает проблема исследования конденсированных систем. Разработаны методы хроматографирования при высоких давлениях с применением высокодисперсных сорбентов в капиллярных колонках, непроницаемых при обычных условиях. Преимущества таких методов исследования неоценимы. Это — микрометоды с большой разрешающей способностью и высокой скоростью анализа, оснащенные современными детектирующими устройствами — проточными кюветами с исключительно малыми объемами, что важно для улучшения разрешающей способности. Применение оптических — спектроскопических, рефрактометрических—, полярографических, кондуктометрических и высокочастотных анализаторов, фотометрическ их, различных ионизационных детекторов в комбинации с автоматическим вводом цветных индикаторов снова выводит жидкостную хроматографию в первые ряды хроматографических методов. [c.6]

    В большинстве случаев разделение, достигаемое посредством аналитической ТСХ, можно перевести на микро- или полу-микропрепаративный уровень. Препаративное разделение на тонких слоях чаще всего проводят методами адсорбционной и распределительной хроматографии, тогда как препаративное разделение методом ионообменной или колоночной хроматографии проводится только на колонках. Помимо препаративной тех существуют и другие методы препаративного разделения (например, классическая жидкостная хроматография и особенно высокоэффективная жидкостная хроматография, или хроматография при высоком давлении, см. гл. 4), которые в ряде случаев могут оказаться более эффективными. Методом сухой колоночной хроматографии (СКХ) можно проводить препаративное разделение в таких же условиях, которые применяются при разделении методом ТСХ [36]. Поэтому рекомендуется прежде всего проанализировать достоинства и недостатки различных типов и методов хроматографии и оценить целесообразность их применения для разделения конкретных соединений (устойчивых или неустойчивых, с близкими или значительно различающимися величинами Rf). Выбор метода зависит также от того, какие количества соединений и как быстро необходимо получить. [c.121]

    Чем выше избирательность хроматографической системы, тем легче осуществляется разделение. С этой точки зрения жидкостная хроматография имеет большие преимущества перед газовой. Взаимодействия в газовой фазе незначительны, и, следовательно, только неподвижная фаза может быть использована для создания термодинамических различий в распределении (наряду с различием в давлении паров). В то же время в жидкостной хроматографии подвижная фаза уже не является инертной, а может играть основную роль в процессе термодинамического распределения вследствие селективного взаимодействия в подвижной фазе. В ТЖХ подвижная фаза избирательно конкурирует с растворенной моле- кулой за центры адсорбции адсорбента. Именно этим в основном объясняется успешное применение классической ЖХ. Хотя колонка неэффективна, значения а достаточно высоки, так что разделение может быть достигнуто. Сочетание этого преимущества высоких значений а с эффективностями и скоростями, сравнимыми с таковыми в газовой хроматографии, делает высокоскоростную жид-1 9Стную хроматографию наиболее мощным способом разделения, [c.18]


Смотреть страницы где упоминается термин Жидкостная хроматография при высоких давлениях применение ЖЖХ: [c.248]    [c.251]    [c.92]    [c.660]    [c.176]    [c.121]    [c.104]    [c.12]    [c.500]    [c.238]    [c.54]    [c.129]    [c.204]   
Аналитическая химия синтетических красителей (1979) -- [ c.113 , c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография при высоком давлении

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография применение

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте