Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление диссоциации набухания

    Вода обеспечивает всасывание и механическое передвижение питательных веществ, продуктов обмена в организме, является прекрасным растворителем. Вода, участвуя в процессах набухания, осмоса и др., создает определенную величину онкотического давления в крови и тканях. Высокие теплоемкость, теплопроводность и удельная теплота испарения воды способствуют поддержанию температуры у теплокровных животных. Являясь высокополярным соединением, вода вызывает диссоциацию электролитов, принимает непосредственное участие в гидролитическом распаде веществ, реакциях гидратации и во многих других физико-химических процессах. Образование в организме воды как конечного продукта обмена в результате процессов биологического окисления сопровождается выделением большого количества энергии — около 57 ккал на 1 моль воды, что равно тепловому эффекту сгорания водорода  [c.22]


    Опираясь на эти экспериментальные данные, рассмотрим, в рамках теории молекулярного поля для степени диссоциации противоионов, закономерности ограниченного и неограниченного набухания глин [15]. Заметим, что силы отталкивания двух соседних алюмосиликатных пластин глины складываются из экспоненциально падающих и осциллирующих сил гидратации и сил осмотического давления диссоциировавшей части противоионов. [c.57]

    Как правило, набухание ионита протекает обратимо и характеризуется равенством между осмотическим давлением внутреннего раствора, с одной стороны, и натяжением эластичной сетки полимера, с другой. Осмотическое давление почти полностью обусловлено противоионами. Можно предположить поэтому, что обмен противо-ионов оказывает существенное влияние на процесс набухания. При этом решающее значение имеет число осмотически активных ионов на единицу веса ионита. Следовательно, однозарядные противоионы должны вызывать более сильное набухание, чем многозарядные. Можно также утверждать, что добавление электролита к внешнему раствору должно приводить к уменьшению набухания, если степень диссоциации ионита считать постоянной. Это объясняется неравномерным распределением ионов между двумя фазами (см. 2. 5, стр. 46). Проведенные Самуэльсоном [102, 104] эксперименты над сульфированными катионитами различных типов показали, что указанные закономерности, за редкими исключениями, хорошо выполняются. [c.43]

    Однако полученные нами экспериментальные данные пе удовлетворяют уравнению (2). Прежде всего в начальный отрезок времени набухание не происходит. Объем смолы увеличивается через некоторое время от начала опыта, зависящее от природы смолы и от иона, которым смола насыщена. Это можно объяснить следующим образом после приведения смолы в контакт с водой в начальный период идет присоединение воды по водородной связи. Этот процесс не сопровождается набуханием. Наоборот, имеет место контракция системы за счет увеличенной плотности связанной воды. Затем следует отщепление противоионов (диссоциация), сопровождающееся сольватацией последних. В ионите создается большое осмотическое давление, обусловленное высокой концентрацией в них противоионов. Так как между внешним раствором и зернами ионитов создается разность осмотических давлений, то вода диффундирует в ионит, и объем его увеличивается. Можно полагать, что степень набухания, а также и кинетика набухания должны зависеть от концентрации противоионов и от их заряда. [c.193]


    Значение pH раствора полиамфолита, при котором средний суммарный заряд на цепи равен нулю, называется изоэлектрической точкой (ИЭТ). Величина ИЭТ не зависит от концентрации полиамфолита и является важной константой полиамфолита. На различии в ИЭТ основано фракционирование смесей белков, например, методом электрофореза. При определении ИЭТ учитывается суммарный заряд макромолекул, обусловленный не только диссоциацией кислотных и основных групп полиамфолита, но и специфическим связыванием посторонних ионов из раствора. ИЭТ определяется с помощью электрокинетических методов (в частности, электрофореза) либо косвенным путем по изменению свойств, связанных с зарядом макромолекул. Значения степени набухания, растворимости полиамфолитов, осмотического давления и вязкости их растворов в ИЭТ проходят через минимум. Вязкость в ИЭТ минимальна (рис. IV. 7), поскольку вследствие взаимного притяжения присутствующих в равном количестве противоположно заряженных групп полимерная цепь принимает относительно свернутую конформацию. При удалении от ИЭТ цепь полиамфолита приобретает суммарный положительный (в кислой области pH) или отрицательный (в щелочной области pH) заряд [c.127]

    Степень набухания П. г. зависит от природы макромолекул, гл. обр. от их сродства к воде, степени сшивания, доли ионогенных групп, а также от внеш. условий (т-ры, давления, pH и ионной силы р-ра). Зависимость степени набухания П. г. от указанных параметров качественно описывается ур-ниями термодинамики набухания сетчатых полимеров. Сильнонабухающие П. г. обычно являются полиэлектролитами взаимное отталкивание связанных с полимерной сеткой одноименно заряженных групп повышает степень набухания П. г., однако подавление диссоциации ионогенных групп, а также их экранирование при увеличении ионной силы р-ра резко (иногда катастрофически) снижают набухание П. г. Такое явление (коллапс) м. 6. обусловлено также сорбцией многозарядных противоионов или введением плохого р-рителя. [c.639]

    Давление набухания зависит от степени сшивки смолы В самом деле, если мы рассмотрим смолу (катионит) как полупроницаемую перегородку (за полупроницаемую перегородку принимают поверхность зерна ионита, проницаемую для молекул растворителя и катионов, но непроницаемую для фиксированных ионов, для анионов), то осмотическое давление со стороны внешнего раствора всегда превышает осмотическое давление со стороны раствора в фазе ионита по несколоким причинам Во первых, в фазе ионита всегда раствор высокой концентрации (6 н и выше) Во-вторых, фиксированные ионные группы, определяющие емкость смолы, осмотически неактивны В третьих, матрица (каркас) смолы для уравновешивания внешнего осмотического давления оказывает на раствор в фазе смолы давление, обусловленное упругостью каркаса Набухание смолы с большим процентом сшивки мало, концентрация внутреннего (при равной емкости) раствора выше, следовательно, и давление Р, оказываемое каркасом смолы на внутренний раствор, выше Как видно из приведенного уравнения, Повышение количества сшивок должно привести к увеличению избирательности Чем больше разница объемов гидратированных ионов, тем выше избирательность Для ионов с небольшой разницей объемов решающее значение приобретает соотношение коэффициентов активности Как было сказано выше, соотношение коэффициентов активности во внешнем растворе мало влияет на коэффициент избирательности Однако такое явление в растворе, как меньшая диссоциация соли АУ по сравнению с В (и, как следствие, уменьшение а, в по сравнению с в.в), должно благоприятно сказываться на избирательности [c.145]

    Введем предположение о простейшей зависимости степени диссоциации а от усредненного по водному слою параметра упорядоченности воды s, а именно а 1 - s. Тогда можно найти зависимость толщины водного слоя от внешнего осмотического давления, а также критическую точку изотермы набухания, условия равновесия квазикристаллической и ламеллярной фаз, условия ограниченного и неограниченного набухания, фазовый переход при изменении ионнной силы, температуры н давления, условия сосуществования различных квазикрист лических фаз и характер увеличения площади алюмосиликатных пластин глины при набухании. [c.57]

    Перейдем теперь ко второму случаю, когда молекулам растворителя энергетически выгодно контактировать с некоторыми участками мономерных звеньев полимерной цепи. Примером может служить раствор, где растворителем является вода, а на звеньях полимерной цепи имеются и гидрофобные, и полярные группы. В веществах с низким молекулярным, весом в этом случае возникают разнообразные фазы лиотропных жидких кристаллов (см. гл. 3). Стерические ограничения, налагаемые тем обстоятельством, что мономеры полимерной цепи связаны друг с другом, не допускают проявления картины чередования жидкокристаллических мезофаз, наблюдающейся у низкомолекулярных веществ, однако две закономерности, которые ясно проявляются в ламеллярных фазах лиотропных жидких кристаллов, должны сохраниться и для растворов полимеров. Это — ограниченное набухание в случае, когда в полимерной цепи имеются недиссоци-ирующие в воде полярные группы, и неограниченное набухание, связанное с диссоциацией полярных групп и действием осмотического давления диссоциировавших ионов. [c.70]


    А. III, 237 и ниже). С точки зрения Эдельмана и Фаведжи, в предложенной ими структуре предполагается обмен основаниями до 504,8 мгэкв. Бергер рассматривает монтмориллонит как макромолекулу поливалентной кислоты, вытянутую в двух направлениях, константа диссоциации. которой быстро уменьшается на последовательных степенях диссоциации. Такое представление служит ответом на вопрос, почему только малая часть всех кислотных гидроксильных групп участвует в реакции метилизации. Вследствие этой реакции монтмориллонит теряет свое свойство внутри-кристаллического набухания, и размер ячейки в направлении оси с становится независимым от внешнего давления водяного пара< [c.76]


Физическая и коллоидная химия (1974) -- [ c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Давление набухания

Диссоциации давление Давление

Диссоциации давление Давление диссоциация

Набухание



© 2025 chem21.info Реклама на сайте