Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ по параметрам удерживания

    Качественный газохроматографический анализ. В газовой хроматографии параметры удерживания какого-либо соединения в смеси при определенных условиях характеризуют природу этого соединения, поэтому параметры удерживания могут быть использованы для целей идентификации. [c.190]

    Абсолютный удельный объем удерживания является наиболее полно скорректированной характеристикой удерживания и обладает наилучшей сопоставимостью по сравнению со всеми иными абсолютными характеристиками удерживания. Однако в практике качественного газохроматографического анализа этим параметром пользуются редко, т.к. выполнить точный расчет трудно (девять параметров входят в состав уравнения и сложно определить их все с высокой точностью). Поэтому в повседневной практике получила большее распространение другая группа параметров — относительные параметры удерживания. [c.16]


    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов 1) сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования 2) применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, температурой кипения, числом углеродных атомов или функциональных групп и т. д.) 3) сочетание газовой хроматографии с другими инструментальными методами 4) применение селективных детекторов. [c.190]

    Взаимодействие каждого вещества с подвижной и неподвижной фазами является его индивидуальной характеристикой. Основным параметром, применяемым в хроматографии для целей качественного анализа, является удерживание. В газовой и жидкостной колоночной хроматографии время удерживания вещества зависит от многих факторов качества набивки ко- [c.628]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]


    Качественный анализ по параметрам удерживания [c.360]

    Выбор оптимальных условий разделения [22] Выделение в режиме ионообменной и 229] обращенно-фазовой хроматографии Повыщение чувствительности анализа [93 [ Межлабораторная воспроизводимость [149] величин удерживания. Способы представления данных Сравнительное исследование индексов [364] удерживания и коэффициентов емкости как параметров для качественного анализа. Влияние подвижной фазы [c.298]

    Подробно описанные в литературе приемы идентификации по параметрам удерживания [1] в применении к АРП не имеют каких-либо специфических особенностей, и рассматривать их в этой книге нет необходимости. Заслуживают, однако, обсуждения три других возможных подхода к качественному анализу паровой фазы  [c.220]

    Реакционная газовая хроматография. Сочетание химических и хроматографических методов исследования с получением в результате химических реакций соединений, заметно отличающихся по параметрам удерживания от соединений, присутствующих в исходной пробе, позволяет осуществлять качественный анализ весьма сложных объектов. Химические реакции (обмена, гидрирования, дегидрирования, дегидратации, декарбоксилирования, гидрогенолиза, этерификации и др.) могут осуществляться в различных звеньях хроматографической системы до колонки, после колонки или непосредственно в колонке. [c.222]

    Для решения задач качественного газохроматографического анализа, наряду с методом добавки чистых веществ и сравнения параметров удерживания (метод внешнего стандарта), существуют другие пути идентификации, например, идентификация по графикам удерживания. [c.97]

    Практическая работа № 4 Качественный анализ по параметрам удерживания [c.129]

    Для качественного анализа применяются корреляционные зависимости параметров удерживания от числа атомов углерода в молекуле, температур кипения, электронных поляризуемостей исследованных соединений. [c.289]

    Относительные параметры удерживания практически не зависят от небольших колебании параметров опыта, поэтому их чаще всего используют в тех случаях, когда необходимы точные значения величин удерживания, в частности для целей идентификации (проведение качественного анализа). [c.35]

    В этом случае сочетание ГХ/МС является наиболее подходящей аналитической техникой, хотя современные масс-спектральные библиотеки не всегда дают правильный ответ при анализе неизвестного соединения. Для повышения надежности качественного анализа наряду со спектральной информацией необходимо использовать хроматографические параметры удерживания (см. гл. И) или коэффициенты распределения (см. гл. VI), а также применять дополнительно другие приемы хроматографической идентификации, например, получение производных (гл. VII) и др. [c.608]

    Основой качественного анализа служит местоположение пика на хроматограмме, которое характеризуется большей частью двумя параметрами временем (1уд) или объемом удерживания (Ууд). Время удерживания компонента — это период от момента ввода анализируемой пробы до выхода максимума пика. Объем удерживания — это количество газа-носителя, прошедшего через колонку с момента ввода пробы до момента появления максимума пика на хроматограмме. [c.47]

    В практике аналитического контроля приходится сталкиваться с соединениями, не входящими в список приоритетных загрязнителей. Поэтому правильная идентификация при таком скрининге чрезвычайно важна. В этом случае сочетание КГХ/МС является наиболее подходящей аналитической техникой, хотя современные масс-спектральные библиотеки не всегда дают правильный ответ при анализе неизвестного соединения. Для повышения надежности качественного анализа наряду со спектральной информацией необходимо использовать хроматографические параметры удерживания. Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификацию веществ, которые не могут быть опознаны с помощью какого-либо одного метода. [c.39]

    Как уже отмечалось, надежность данных качественного хрома тографического анализа значительно повыщается при сравнении параметров удерживания на нескольких колонках с неподвижными фазами различного типа. [c.157]

    Постоянство профиля хроматограмм приводит к парадоксальному на первый взгляд явлению оператор, осуществивший хромато-масс-спектрометрическую расшифровку всего нескольких хроматограмм, в дальнейшем может визуально и практически безошибочно опознавать на хроматограммах таких сложных смесей пики нескольких десятков компонентов, в том числе всех 15 ароматических углеводородов Се—Сд, постоянно присутствующих в воздухе городов. При визуальной идентификации такой оператор в первую очередь опирается на взаимное расположение пиков на хроматограмме, т. е. как раз на тот параметр, который лежит в основе многих детально разработанных систем качественного газохроматографического анализа [25]. Таким образом, становится совершенно очевид-чой возможность замены хромато-масс-спектрометрической процедуры идентификации, по крайней мере при выполнении рутинных анализов, гораздо менее дорогостоящей и часто менее трудоемкой идентификацией с помощью относительных параметров удерживания. Преимущество качественного анализа по параметрам удерживания состоит также в том, что он может производиться с помощью серийной сравнительно дешевой аппаратуры и не требует участия специалистов высокой квалификации. [c.63]


    Качественный анализ основан на сравнении времени (или объема) удерживания известных веществ с соответствующими параметрами пиков на хроматограммах разделяемых смесей. [c.32]

    На фоне таких крупных успехов особенно заметно отставание, наблюдаемое в области применения этого метода для идентификации химических соединений. Такое отставание нельзя объяснить недостатками самого метода. Хроматографические постоянные индивидуального соединения, определенные на различных неподвижных фазах и взятые в совокупности, служат таким же надежным отличительным признаком этого соединения, как, например, характеристические частоты той или иной функциональной группы при спектральном анализе. В какой-то степени отставание объяснимо условиями возникновения и развития газовой хроматографии в 50—бО-е годы, когда бурно развивались смежные области науки и техники. Это привело к быстрому созданию современной высокоавтоматизированной аппаратуры для осуществления эффективного разделения смесей и получения надежных количественных результатов. Достижению высокой эффективности разделения способствовали также большой ассортимент сорбентов и носителей, используемых в газовой хроматографии, и разнообразие рабочих параметров, с легкостью реализуемых в современной хроматографической аппаратуре. Следствием явилось то, что качественные данные (о параметрах удерживания) часто представляли собой побочный продукт количественного анализа. В силу этого они оказались разрозненными и плохо сопоставимыми, их трудно использовать для идентификации химических соединений. [c.4]

    Для качественного анализа необходимо, чтобы параметр удерживания был однозначно связан с сорбционными свойствами исследуемого вещества. Для количественного анализа требуется, чтобы зарегистрированные пики были достаточно хорошо отделены друг от друга и измеряемые параметры этих пиков (площадь 5 или высота Н) адекватно характеризовали содержание индивидуальных веществ в анализируемой смеси. При анализе веществ химически инертных эти задачи решаются во многих случаях сравнительно просто. Если же мы имеем дело с веществами, подверженными различным химическим превращениям, то возникает опасение, что результаты хроматографического анализа могут быть искажены вследствие этих превращений. Следует иметь в виду, что при анализе нестабильных и реакционноспособных соединений искажения в анализе могут быть вызваны подготовкой пробы, отбором пробы, вводом ее в дозатор, процессами в колонке, до детектора и в детекторе. В этой главе будут рассматриваться только процессы, происходящие в хроматографической колонке. [c.9]

    Для подтверждения идентификации по параметрам удерживания применяются инструментальные и химические методы идентификации. Методы реакционной газовой хроматографии метод вычитания с помощью селективных реагентов, метод сдвига пиков по производным химических реакций анализируемого вещества с реагентом [35], пиролиза и озонолиза анализируемых веществ, а также использование цветных химических реакций со специфичными реагентами на присутствие различных функциональных групп [36, с. 75]. Применяется также качественная идентификация по относительному отклику различ-- ных типов селективных детекторов и разнообразные методы инструментального анализа препаративно выделенных компонентов (масс-спектрометрия, ИК- и УФ-спектроскопия). Большинство из перечисленных методов идентификации подробно описаны в специальной литературе по хроматографии [37—40]. [c.17]

    Выход компонентов смеси осуществляется в следующем порядке линдан, альдрин, ТХМ-3, ДДЭ, ДДД, ДДТ. Необходимо подобрать такие рабочие параметры и насадку колонки, чтобы продолжительность анализа не превышала 30 мин. Последовательность выхода из колонки ДДТ и ДДД может меняться в зависимости от вида изомера и применяемых насадок. Качественный анализ проводится путем сравнения времени удерживания полученных пиков со временем удерживания пиков стандартной смеси. [c.348]

    Качественный анализ в жидкостной хроматографии можно проводить по параметрам удерживания так же, как и в газовой хроматографии [1, 3]. Некоторые детекторы (УФ-детекторы, рефрактометрический, диэлькометрический) позволяют получать некоторую информацию о природе разделенных компонентов. Жидкостная хроматография легко позволяет производить отбор разделенных компонентов и их идентификацию подходящими физико-химическими методами. В этом отношении наиболее важно комбинирование жидкостного хроматографа с масс-спектрометром [31—35] нечувствительным инфракрасным спектрометром. [c.202]

    Разумеется, газовую хроматографию нельзя рассматривать исключительно как метод качественного анализа. Но она обладает одной особенностью, которая делает ее весьма пригодной для этой цели. Речь идет о скорости, с которой определенное соединение при данных условиях проходит через данную колонку. Эффективное время удерживания является функцией параметров колонки, природы компонента, скорости газа-носителя, температуры колонки и, до некоторой степени, величины пробы. [c.84]

    Цель работы. Проведение качественного анализа смеси органических соединений по параметрам удерживания с использованием рефрактометрического детектора. Количественная оценка эффективности хроматографического разделения. Сравнение относительной чувствительности УФ- и рефрактометрического детекторов к различным соединениям анализируемой смеси. [c.555]

    Качественный анализ по параметрам удерживания методом метки. Выводят хроматограф с установленным рефрактометрическим детектором на рабочий режим. Включают прибор в сеть и на блоке питания и управления нажимают клавишу ON. [c.557]

    Параметры удерживания и качественный анализ [c.84]

    Названные параметры (объемы, времена и расстояния) удерживания могут быть использованы для качественной характеристики соединения лишь при проведении анализа в строго заданных условиях на одном и том же приборе. Для сопоставления получаемых значений удерживаемых объемов с литературными данными или полученными на другом приборе или в иных условиях (для той же неподвижной фазы и температуры колонки) необходимо вводить ряд поправок на объем газа-носителя (мертвый объем), не принимающий участия в вымывании компонентов пробы, на градиент давления газа-носителя по слою неподвижной фазы и на количество неподвижной фазы. [c.164]

    Качественный анализ по относительному сигналу детекторов требует накопления как. можно большего числа экспе]эименталь-ных данных по значениям Яо для различных объектов анализа и детекторов, объединяемых выбранной газовой сх< мой. Разрабатываемое в настоящее время информационное обеспечение универсальной системы химического анализа предусматривает включение в банк ЭВМ стандартных справочных данных наряду с различными параметрами удерживания сведений по относительным сигналам детектируемых устройств. [c.198]

    Идентификация неизвестного соединения по параметрам удерживания на одной неподвижной фазе часто оказывается ненадежной из-за случайного наложения хроматографических зон гомологов и изомеров, принадлежащих к различным гомологическим рядам. Поэтому в практике качественного газохроматографического анализа прибегают к исследованию характеристирс удерживания веществ неподвижными фазами различной условной хроматографической полярности. Совокупность данных по удерживанию вещества на нескольких (трех-четырех) колонках с различными неподвижными фазами позволяет проводить групповую классификацию, а в некоторых случаях и однозначно идентифицировать неизвестное соединение. [c.290]

    Качественный анализ. Идентификация хроматографическими методами — это прежде всего идентификация по параметрам удерживания ( и, Vjf), которые характеризуются хорошей воспроизводимостью, относительные стандартные отклонения ве превышают 0,02. Совпадение величин удерживания неизвестного и стандартного соединений свидетельствует о том, что эти соединения могут быть идентичными. Если различные вещества имеют одинаковое время удерживания, то для большей достоверности идентификации сравнение хроматографических параметров известного и неизвестного веществ проводят в сильно различающихся условиях. Например, получают данные об их фоматографическом поведении на колонках с различными неподвижными фазами. Если хроматографическое поведение стандартного и неизвестного веществ в таких случаях идентично, то достоверность идентификации возрастает до 99%. [c.288]

    Если набор эталонных соединений отсутствует, можно попытаться провести идентификацию по табличным значениям величин удерживания. Межлабораторная воспроизводимость абсолютных величин Ir, k ) пока неудовлетворительна. Поэтому множество опубликованных в такой форме данных почти бесполезно при качественном анализе. Иногда на основе опубликованных величин к можно рассчитать параметры а со значительно большей надежностью. Однако в этом случае близость табличных и наблюдаемых величин — весьма шаткое доказательство. Тем не менее такой способ идентификации вполне применим по отношению к тем объектам, состав которых хорошо изучен. Лекарственные вещества, а также примеси в них можно отнести именно к такой категории. При воспроизведении методик анализа в этом случае фактически необходимо провести не идентификацию ранее неизвестных веществ, а лишь привязать> измеренные величины удерживания к опубликованным величинам удерживания и структурам соединений. Например, детальное исследование примесей в форидоне (I) на Зорбаксе ODS показало, что пику с а = 0,19 соответствует структура П, а пику с а=1,51 — структура III (рис. 6.1)  [c.249]

    В зависимости от решаемой аналитической задачи (отнесение к индивидуальным химическим соединениям пиков на хроматограмме смеси, состав которой ориентировочно известен групповой анализ полная идентификация компонентов) с целью качественного анализа могут использоваться как чисто хроматографические приемы (сравнение параметров удерживания, получение для групп веществ коррелящ)онных зависимостей типа параметр удерживания — физико-химические характеристики, использование селективных детекторов, реакционная хроматография, пиролитическая хроматография), так и варианты, сочетающие газовую хроматографию с другими физико-химическими методами анализа (препаративный сбор фракций с их последующим исследованием, хромато-масс-спектрометрия, сочетание хроматографа с ИК-спектрометром и др.). На современном уровне развития методологии аналитической химии, аналитического приборостроения, вычислительной техники наибольшую достоверность идентификации обеспечивают комбинированные методы. Однако их аппаратурное оформление достаточно сложно, приборы имеют высокую стоимость и реально эксплуатируются только в крупных аналитических центрах либо при решении неординарных задач. Поэтому рассматриваемые ниже чисто хроматографические приемы качественного анализа и в настоящее время широко применяют в аналитической практике. [c.214]

    Качественный анализ на основе величин удерживания (метод сравнения, метод "метки", по удерживанию идентифицируемых соединений различными неподвижными фазами, с использованием корреляционных зависимостей параметров удерживания со строением молекул и их физико-химическими свойствами). Реакционная газовая хроматография. Хроматоспектральный анализ (сочетание газовой хроматографии с масс-и ИК-спектроскопии). [c.146]

    Для качественного анализа углеводородных и гетероатомных соединений с помощью так называемой линейной элю-ционной адсорбционной хроматографии Снайдер предложил использовать относительную величину удерживания вещества (параметр адсорбируемости) 6], которая эквивалентна силе растворителя, необходимой для получения удерживания в 1 мл/г па оксиде алюминия с 3,8% воды [64]. Используя экспериментальные данные по удерживанию компонентов, содержащихся в продуктах разделения, и характеристичные параметры стандартизированного адсорбента — его активность и поверхностный объем (а и Fa)i можно рассчитать пределы изменения адсорбируемости отдельных групп соединений и качественно оценить состав анализируемых соединений [65, 66]. [c.134]

    Однако в практике качественного газохроматографического анализа Ууд используются редко, поскольку их расчет возможен лишь при использовании прецизионной аппаратуры, позволяющей точно измерять абсолютные значения температуры колонки и скорость газа-носителя. Кроме того, для их определения необходимо знать количество неподвижной фазы в колонке, экспериментальное определение которого с высокой точностью при работе в газожидкостном варианте, особенно при использовании капиллярных колонок, встречает практические трудности. Поэтому в повседневной практике гор.аздо большее распространение получили относительные параметры удерживания относительный объем удерживания и относительное время удерживания. [c.153]

    ИССЛЕДУЕМЫХ ВЕЩЕСТВ Для оптимизации хроматографического разделения с помощью ЭВМ, для качественных анализов необходимо знать параметры удерживания всех анализируемых веществ. В том случае, когда Таблица 14.10. Законожрности удерживания, реализуемые в ЖАХ (НФХ — нормально-фазовая хроматография, ОФХ — обращенно-фазовая хроматография, МСХ — молекулярноситовая хроматография, [c.254]

    Качественный анализ по параметрам удерживания проводится несколькими методами сравнением с литературными данными экспериментально найденных относительных объемов удерживания (с существенными оговорками, приведенными выше) сравнением времен удерживания эталонных веществ с анализируемыми, предпочтительно на нескольких неподвиж- ныx фазах различной природы и полярности исследованием фафических зависимостей логарифма объема удерживания от > числа атомов углерода в молекуле анализируемого вещества, емпературы кипения, коэффициента преломления и др. срав- №нием графической зависимости параметров удерживания на ц вух или трех неподвижных фазах и других реже используемых висимостей [34]. [c.17]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]


Смотреть страницы где упоминается термин Качественный анализ по параметрам удерживания: [c.315]   
Смотреть главы в:

Руководство к практическим работам по газовой хроматографии -> Качественный анализ по параметрам удерживания

Руководство к практическим работам по газовой хроматографии Издание 2 -> Качественный анализ по параметрам удерживания

Практическая газовая и жидкостная хроматография -> Качественный анализ по параметрам удерживания




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Удерживание



© 2025 chem21.info Реклама на сайте