Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходные металлы катализ комплексными

    Типичные К. при гетерогенном катализе окисл.-восстановит. р-ций (окисления и восстановления, гидрирования и дегидрирования, разложения нестойких кислородсодержащих соед. и др.) — переходные металлы, их соед. и др. в-ва, способные отдавать и принимать электроны при взаимод. с реагентами (см., напр.. Палладиевые катализаторы, Ванадиевые катализаторы). В гомогенном катализе аналогичные р-ции протекают с участием комплексов переходных металлов (см. Комплексные катализаторы). Их каталитич. св-ва объясняются склонностью к образованию координац. связи с реагентами. Высокоактивные К. в кислотно-основных р-циях (крекинга, гидратации и дегидратации, гидролиза, нек-рых р-цйй полимеризации и изомеризации) — твердые и жидкие в-ва, способные отщеплять или присоединять протон при взаимод. с реагентами. При катализе апротонными к-тами взаимод. осуществляется через своб. пару электронов реагента (см. Кислотные катализаторы, Основные катализаторы). [c.248]


    Автор книги, ранее принимавший активное участие в разработке так называемой электронной теории катализа, теперь, как он сам пишет, пытается объединить химический и физический аспекты катализа . Экстраполируя от гомогенного к гетерогенному катализу , он интерпретирует механизм гетерогенного катализа с позиций теории комплексообразования, поскольку работы последних лет показали, что между гетерогенным и гомогенным катализом нельзя провести четкую границу, как это считалось ранее в обоих случаях найдены сходные элементарные механизмы и активные формы. Убедительным примером может служить сопоставление окислительно-восстановитель-ного катализа на переходных металлах и их твердых неорганических соединениях с катализом неорганическими комплексными соединениями переходных металлов в растворах. [c.5]

    Когда в катализе участвует атом переходного металла, удобно интерпретировать реакцию в терминах, характеризующих поведение комплексного соединения [4]. — Прим. перев. [c.15]

    Очевидно, что изучение реакции гидрирования в присутствии комплексных соединений переходных металлов ценно тем, что процесс не осложнен явлениями диффузии внутри пор, характером и параметрами поверхности и др., что имеет место в случае гетерогенного катализа. [c.137]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]


    Координационно-комплексный катализ, осуществляемый соединениями переходных металлов, является составной частью ферментативного катализа в биологических системах. [c.351]

    Перейдем к рассмотрению гомогенного катализа комплексными соединениями переходных металлов. При таком катализе в присутствии комплексных катализаторов (чаще всего катионов переходных металлов) осуществляют реакции восстановления и окисления, гидрирования и гидратации, полимеризации и изомеризации. Примером может служить метод промышленного окисления этилена до ацетальдегида в водной среде в присутствии палладиевого катализатора [c.183]

    В качестве активных соединений при нанесении на носители в последнее время используют комплексные соединения переходных металлов, оказавшиеся эффективными при гомогенном катализе в растворах. Синтез комплексов на поверхности носителей позволил получить оригинальные катализаторы, не имеющие аналогов среди растворимых комплексов (рис. 5). Закрепленные кластеры палладия обладают высокой селективностью в процессах гидрирования при производстве гербицидов. [c.56]

    Книга посвящена гомогенному катализу комплексами переходных металлов — проблеме, чрезвычайно важной для самих различных областей химии органической, химии координационных соединений, гетерогенного катализа, нефтехимии, химии элементоорганических соединений, биохимии и др. Рассмотрены вопросы гомогенного гидрирования олефинов и Диенов, диМеризация и со-димеризация олефинов, реакции непредельных соединений, протекающие на комплексных никелевых катализаторах. [c.4]

    Катализ комплексными соединениями переходных металлов относится к числу быстро развивающихся и многообещающих областей химии. [c.5]

    Типичным результатом такого влияния оказывается очень существенное изменение как абсолютных, так и, что особенно важно, относительных скоростей различных каналов химической реакции. Каталитическое действие могут оказывать частицы очень разной природы это могут быть протоны (и вообще различные ионы) в водных растворах, комплексные соединения переходных металлов, поверхности многих твердых тел и т.д. В последнем случае обычно считается, что наиболее эффективными в каталитическом отношении являются некоторые выделенные участки поверхности твердого тела (те или иные поверхностные группы, структурно выделенные атомы кристалла — вершины, ребра и т. п., структурные дефекты, примесные структуры и т.д.), которые часто называют активными центрами (АЦ). Нам будет удобно распространить этот термин а любые частицы, которые оказывают каталитическое действие, независимо от того, идет ли речь о каталитически активных частицах в растворе (гомогенный катализ) ли на ловерхности твердого катализатора (гетерогенный катализ). Механизмы каталитического действия имеют много общих черт в обоих этих случаях, хотя, конечно, есть и ряд специфических особенностей в самих химических перестройках, и в постановке возникающих при этом теоретических задач именно по этой причине об- [c.259]

    Понятие гомогенный катализ объединяет в себе множество разнообразных каталитических процессов, протекающих в однородной жидкой среде. К ним относятся реакции кислотного и основного катализа, каталитические процессы с участием катионов непереходных металлов или с участием анионных частиц, реакции ферментативного катализа, реакции гомогенного металлокомплексного катализа и т.д. Здесь мы ограничимся вопросами, связанными с применением квантовохимических расчетов к исследованию каталитических реакций, в которых активными центрами являются комплексные соединения переходных металлов. [c.265]

    Предлагаемую вниманию читателя монографию Гидриды переходных металлов следует рассматривать как первый опыт систематизации данных такого рода. Основной предмет обсуждения — связи водорода с переходными металлами в комплексах самого различного строения. Хотя книга задумана как первая в серии, посвященной химии водорода, она представляет не меньший интерес и для изучения свойств металлоорганических комплексов, содержащих водород, и для изучения явлений катализа с участием металлоорганических комплексных катализаторов. Объясняется это тем, что очень многие реакции органических веществ — гидрирование, дегидрирование, изомеризация, полимеризация и др.— протекают как процессы перераспределения или переноса водорода с образованием на промежуточной стадии связи металл — водород. [c.5]

    Кратная связь в комплексе оказывается частично разорванной и очень активной при различных реакциях присоединения. Вследствие этого комплексы переходных металлов широко используются на практике как катализаторы разнообразных процессов, в которых участвуют непредельные соединения (гидрирование, полимеризация, оксо-синтез и т. п.). Комплексные катализаторы, содержащие различные металлы, действуют очень специфично. Многие из этих комплексов растворимы и могут быть использованы в растворах — осуществляется гомогенный катализ соединениями переходных металлов. Прочность комплекса зависит от природы других лигандов, связанных с металлом. Если связь между олефином и металлом очень прочна, то комплекс не может функционировать как катализатор напротив, малая прочность связи не приводит к достаточному активированию олефина. Отсюда видно важное значение исследований влияния лигандов на прочность я-комплексов. [c.132]


    Катализ комплексными соединениями переходных металлов [c.385]

    Комплексные соединения переходных металлов в последнее время находят все большее практическое применение. Механизм их каталитического действия представляет интерес для понимания не только гомогенного, но, как будет показано ниже, и гетерогенного катализа. Большое значение комплексы переходных металлов играют в биологических системах. Ограничимся рассмотрением лишь небольшого числа гомогенных каталитических реакций, в которых комплексные соединения металлов являются катализаторами или образуются как промежуточные продукты в ходе химического превращения. [c.385]

    До рассмотрения кинетических работ будет дан обзор по химической природе полимеризации, которую мы объясняем при помощи механизма катализа, протекающего под действием комплексных анионов. Такое объяснение связано с тем, что катализатор представляет собой комплекс, в котором в общем случае переходные металлы действуют в качестве координационного агента, а углеродный атом, находящийся на конце растущей цепи полимера, входит в такой комплекс и в активированном состоянии обладает отрицательным зарядом. [c.7]

    Большое внимание в настоящее время уделяется катализу комплексными соединениями. Известно, что 5- и р-уровни электронов внешней оболочки переходных металлов близки к -уровням предыдущей. Это облегчает электронные переходы и создание гибридных орбиталей различной 0 иентации. Взаимодействие атомов или ионов переходног металла с ионами или молекулами других веществ приводит к образованию комплексных соединений металла с одним или нескольмими лигандами, орбитали которых перекрываются орбиталями центрального атома или иона металла. Прочность связи данного лиганда зависит от остальных, одни из связей усиливаются за счет ослабления других связей. [c.361]

    Освовные механизмы катализа. Каталитич. процессы, обусловленные переносом электрона (окисление, восстановление, гидрирование, дегидрирование, разложение нестойких кислородсодержащих соединений), относят к окислительно-восстановительному катализу. Типичными катализаторами для них являются переходные металлы и их соед. простые оксиды (У О,, МпОз, М0О3, Сг Оз), шпинели (Ре О , СиСг О , сульфиды (МоЗз, WS2) и др. для р-ций в р-рах-соли и комплексные соед. переходных металлов. Высокая каталитич. активность этих в-в объясняется тем, что атомы переходных металлов могут существовать в разл. степенях окисления, изменение к-рых не требует больших энергетич. затрат. В результате перенос электрона от реагента к катализатору осуществляется легче, чем в отсутствие катализатора от восстановителя к окислителю. При одноэлеюронном переходе образуются своб. радикалы, далее участвующие в р-ции. Напр., при переходе одного электрона от активного центра молибденового катализатора к кислороду образуется ион-радикал О , участвующий далее в каталитич. окислении (Мо " -(-63-> Мо " -(-+ О Оз + С Н - продукт). Существует окислит.-восста-иовит. К, с многоэлектронным механизмом, при к-ром не образуются своб. радикалы в качестве промежут. частиц. Многоэлектронные переходы между катализатором и реагирующими молекулами возможны, если в активный центр катализатора входят неск. атомов переходного металла. Напр., в разложении Н,Оз активны комплексные соед., содержащие 2 иона Ре " в восстановлении мол. азота до N2 Н4-комплексные соед., содержащие 2 или более ионов 663 [c.336]

    ОКИСЛЙТЕЛЬНО-ВОССТАНОВЙТЕЛЬНЬШ КАТАЛИЗ, ускорение окислит.-восегановит. р-ций добавками в-в-катализаторов, меняющих свою степень окисления при попеременном взаимод. с реагентами. Такими в-вами м.б. твердые, жидкие или газообразные в-ва-гл. обр. переходные металлы, их соли, оксиды, сульфиды, сольватированные и комплексные ионы переходных металлов в р-рах, оксиды азота. Окислит.-восстановит. взаимод. может протекать в условиях как гетерогенного, так и гомогенного катализа. [c.337]

    В окисл.-восстановит. р-циях небольшая скорость м. б. обусловлена тем, что числа электронов, отдаваемых одной частицей восстановителя и принимаемых одной частицей окислителя, не совпадают. При этом катализатором м. б. частица, способная чпереключать одноэлектронный механизм р-ции на двухэлектронный (см. Окислительновосстановительный катализ). Большие возможности для Г. к. открываются при использ. в кач-ве катализаторов комплексных соед. переходных металлов (см. Катализ комплексными соединениями). А. Е. Шилов. ГОМОЛИТИЧЕСКИЕ РЕАКЦИИ, происходят в результате разрыва одной или неск. электронных пар, образующих хим. связь, и (или) образования новой связи при взаимод. частиц, каждая из к-рых обладает неспаренным электроном. В Г. р. участвуют или образуются атомы или своб. радикалы. Типичные Г. р. мономолекулярный и бимолекулярный распады молекул с образованием своб. радикалов р-ции отрыва, замещения и присоед. с участием своб. радикалов рекомбинация и диспропорционирование своб. радикалов. К Г. р. часто относят также окисл.-восстановит. р-ции с переносом одного электрона. При Г. р. атомов (радикалов) с молекулами выполняется принцип неуничтожимости своб. валентности. Г. р.— элементарные акты мн. цепных р-ций, вапр. радикальной и анионной полимеризации, хлорирования и нитрования алиф. соединений. L-ГОМОСЕРИН (Ь-а-амино-у-оксимасляная к-та) НОСН2СНгСН(ЫНг)СООН, крист. раств. в воде. Легко образует 7-лактон. Содержится в соке ряда растений, в белки не включается. Предшественник треонина. Биосинтез — последоват. восстановлением группы Э-СООН аспарагиновой к-ты. Получ. галогенированием и послед, аминированием бутиролактона. Образуется из метионина при специфич. расщеплении пептидной цепи белков бромцианом эта р-ция использ. для определения первичной структуры белка. [c.141]

    Вопросам гомогенного катализа окислительных реакций посвящено значительное число работ в сборнике. Рассматривается химический механизм действия комплексных соединений родия при окислении высших а-олефинов, окисление фенантрена и тетралина в присутствии ряда солей металлов переменной валентности, окисление изопропилбензола в присутствии солей переходных металлов в низшем валентном состоянии и металлов постоянной вале нтности, а также данные по гомогенному окислению первичных спиртов и циклододеканона. [c.5]

    Для получения меченых соединений можно использовать реакции как гетерогенного, так и гомогенного катализа. Процессы, происходящие при использовании гомогенных катализаторов, более изучены. Знания в этой области существенно расширились в связи с развитием химии комплексных соединений переходных металлов, которые повторяют каталитические свойства металлов, но проявляют своё действие в гомогенной системе. Так, механизм гидрирования, если гидрирование осуществляется на дигидридных комплексах, может быть проиллюстрирован схемой, описывающей восстановление ненасыщенных соединений в присутствии (РЬзР)зкЬС1 [11]  [c.486]

    К числу активных частиц молекулярной природы относятся в первую очередь гидроперекиси, распад к-рых на радикалы индуцирует вырожденное разветвлениз кинетич. цепей окисления и распад макромолекул, сопровождаемый падением мол. массы и потерей прочности полимера. Гидроперекись — главный разветвляющий продукт в процессах термического, фото- и радиа-, ционнохимич. окисления большинства полимеров. Поэтому одна из важных задач стабилизации полим еров — подавление вырожденного разветвления, т. е. разрушение гидроперекисей без образования радикалов. Существует ряд способов такого разрушения кислотно-каталитич. распад, катализ разложения комплексными соединениями ионов,переходных металлов, взаимодействие с органич.. сульфидами и фосфитами. Врзможность использования каждого из этих.способов и их эффектив- [c.240]

    Органическая химия постоянно имеет дело с реакциями, которые осуществляются у определенного центра в сложной молекуле и, если это возможно, с высоким и предсказуемым уровнем стереоселективности. В свете большого опыта, накопленного органической химией, обычно возможно оценить, по крайней мере качественно, вероятность альтернативных путей реакции. Однако даже хорошо обоснованные предположения могут быть ошибочными. Поучительным примером являются эксперименты по синтезу витамина В 2, которые привели к пониманию Вудвардом роли орбитальной симметрии в органической химии. Ограниченность наших знаний в этом отношении очень сильно проявляется в случае гетерогенных реакций, которые выдвигают дополнительные проблемы, и, за исключением очень хорошо изученных случаев, гетерогенный катализ остается относительно эмпирической областью химии. Знания в этой области, однако, существенным образом расширились в связи с развитием химии комплексных соединений переходных металлов, которые повторяют каталитические свойства металлов, но проявляют свое действие в гомогенной сггстеме. Это развитие продвинуло вперед наше понимание катализа, сделав возможным интерпретацию реакций в строго молекулярных терминах. К тому же эти активные в гомогенной среде комплексы часто являются более селективными, чем их гетерогенные металлические двойники, или в выборе между различными функциональными центрами в молекуле, или в отношении более высокой стереоселективности. [c.9]

    Каталитическое гидрирование ненасыщенных соединений. Гетерогенный катализ. Водород в присутствии многочисленных металлических катализаторов (переходных металлов — Рб, Р1, НИ, Ни, N1), а также комплексных катализаторов (СиСг204) может присоединяться к кратным [c.497]

    В заключение этого раздела следует отметить, что недостаточная изученность каталитических свойств металлов, в первой координационной сфере которых находятся лигандные группы ионитов, не позволяет достаточно полно выявить все реакции, в которых они могут быть каталитически активными. Можно лишь по аналогии с катализом растворимыми комплексными соединениями иредполол ить, что диапазон их действия обширен. Изучение кинетики термического разложения закомплексованных форм ионитов показало, что ионы переходных металлов катализируют разрыв связей С—С и С—М, процессы дезаминирования декарбоксилирования полимеров. Показано, что комплексы на носителях мо- [c.328]

    Во многих случаях на поверхности катализатора образуются поверхностные промежуточные соединения, в которых атомы катализатора сохраняют связь со своей кристаллической решеткой. Так, можно предполагать, что при катализе соединениями переходных металлов образуются промежуточные соединения с субстратом, аналогичные комплексным соединениям. На основании этого предположения последнее время пытаются объяснить повы-шениую реакционную способность хемосорбированных молекул с помощью теории поля лигандов и трактовать возникающие связи некоторых органических молекул с катализаторами как я-связи. Таким образом, наметились пути объединения гетерогенного и гомогенного катализа в общую систему. [c.495]

    Таким образом, для осуществления катализа необходимо, чтобы между субстратом и катализатором возникали достаточно сильные связи, чтобы могла произойти заметная поляризация, или отток электронного облака от основной связи А—В. В ряде случаев причиной этого является образование ковалентных связей между субстратом и некоторыми функциональными гругшами фермента. В других случаях мы сталкиваемся с так называемой координационной связью, являющейся причиной образования комплексных соединений. Простетической группой множества ферментов является атом или ион металла (железо, марганец, медь, кобальт, молибден и др.). Все эти металлы относятся к так называемым переходным группам в периодической системе. Все они замечательны тем, что содержат неспаренные электроны (или незаполненные места) в с1-оболочке. Вследствие этого ионы переходных металлов способны образовывать дополнительные. ковалентные связи с атомами, служащими донорами электронов, т. е. предоставляющими для связи неподеленную электронную [c.167]


Смотреть страницы где упоминается термин Переходные металлы катализ комплексными: [c.141]    [c.248]    [c.201]    [c.540]    [c.339]    [c.248]    [c.173]    [c.240]    [c.488]   
Химический энциклопедический словарь (1983) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ металло комплексный

Металлы переходные



© 2025 chem21.info Реклама на сайте