Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межструктурные связи

    ВЛИЯНИЕ ОБРАЗОВАНИЯ МЕЖСТРУКТУРНЫХ СВЯЗЕЙ НА КРИСТАЛЛИЗАЦИЮ РАСПЛАВА ПРИ ТЕЧЕНИИ [c.121]

    Влияние образования межструктурных связей 123 [c.123]

    Влияние образования межструктурных связей 131 [c.131]

    По всей вероятности, должно существовать соответствие между рассмотренными выше межкристаллит-ными связями и морфологией деформируемого расплава. На рис. 6 показана морфология деформируемого расплава, в котором после удаления парафина отчетливо проявляются межструктурные связи. Эти связи напоминают фибриллярные образования, показанные на рис. 5. На рис. 7 воспроизведены межкристаллитные связи, образующиеся между двумя соседними рядами линейных структур в деформируемом расплаве (см. также рис. 2 и 6). Большая часть полимера была вытеснена из области максимального сдвига и вошла в кристаллические образования, видимые в боковой части рис. 7, Весь оставшийся полимер вошел в образовавшиеся межкристаллитные связи, если не считать нескольких крупных структурных элементов, видимых отдельно на пустых участках в нижней части рис. 6 и 7. Эти элементы также представляют собой отдельные кластеры полиэтилена. [c.131]


    Влияние образования межструктурных связей 137 [c.137]

    Межструктурные связи ничем не отличаются от межмолекуляр-ных связей, возникающих за счет полярных групп, или более сильных водородных связей, но действуют они между макромолекулами, расположенными в соседних элементах надмолекулярной структуры. Количество этих связей, их интенсивность будут в числе других факторов определять способность полимерного тела к деформации. Однако характер межструктурных связей является лишь одним из четырех параметров, определяющих деформационные свойства полимерного тела, составленного из абсолютно жестких структурных элементов. Размеры и форма структурных единиц и способы их укладки в этом крайнем случае также играют очень большую роль в формировании комплекса механических свойств. [c.11]

    Одновременно можно говорить об одном из возможных механизмов деформации полимеров — перемещении одних элементов надмолекулярной структуры относительно других без изменения их формы и внутреннего строения. В этом гипотетическом случае свойства полимерного материала будут в основном определяться характером надмолекулярной структуры и силами межструктурных связей, зависящих от химического строения вещества. Такой механизм характерен скорее для неполимерных твердых тел (например, для металлов с зернистой структурой). Для полимеров подобная деформация наблюдается, по-видимому, при очень низких температурах, когда гибкость макромолекул подавляется и элементы структуры выступают как жесткие образования. [c.11]

    Вполне вероятно, что накопление элементарных актов разрыва межструктурных связей и приводит к скачкообразному быстрому развитию деформации в напряженном эластомере через определенное время с момента приложения силы. Во всяком случае это время связано с напряжением и температурой соотношением, аналогичным температурно-временной зависимости прочности  [c.243]

    Можно полагать, что размягчение, как и разрушение, — процесс кинетический, состоящий в постепенном накоплении элементарных актов размягчения и приводящий в конце концов к быстрой утрате первоначальной формы тела. Остается пока открытым вопрос о том, каковы эти элементарные акты процесса размягчения. Возможно, они связаны с разрушением межмолекулярных или межструктурных связей. Результаты измерений 2, 13, 23, 35 энергии активации [c.439]

    Рассмотрим подробнее вопрос о влиянии надмолекулярной организации и степени кристалличности полимеров на их диффузионные свойства. Кристаллические полимеры—структурно-неоднородные вещества с достаточно большим разнообразием уровней структурных элементов и межструктурных связей, обуславливающих их сложную надмолекулярную организацию [282—284]. Естественно, что последняя в значительной степени определяет многие физические и технические свойства кристаллических полимеров [16, 78, 282, 284]. Количественный подход к установлению взаимосвязи между свойствами и структурой в каждом конкретном случае требует выбора соответствующего структурного параметра. Диффузия является чрезвычайно структурно-чувствительным процессом, поэтому установление количественного соотношения между диффузией и надмолекулярной организацией полимеров также требует выбора параметра, структурно-чувствительного, с одной стороны, и позволяющего описывать диффузионные явления, с другой. Сопоставление полученных опытных данных с различными структурными уровнями кристаллической матрицы показывает, что диффузионные свойства в большинстве случаев не чувствительны к размерам сферолитов до тех пор, пока не образуются нарушения сплошности образца. Нам представляется физически обоснованным, несмотря на критические замечания некоторых исследователей [264—266], выбрать в качестве структурно-чувствительного параметра степень кристалличности, которая является наиболее общей интегральной характеристикой надмолекулярной организации кристаллического полимера. Самое важное свойство этого параметра состоит в том, что Ф°кр является величиной регулируемой и количественно оцениваемой независимыми методами, а рассматриваемая модель позволяет получить простое аналитическое соотношение, связывающее О и ф кр. [c.174]


    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    Наиболее общим структурным механизмом, обусловливающим обратимость таких больших деформаций, по-видимому,, является существование системы межструктурных связей, соединяющих структурные элементы (безотносительно конкретизации особенностей их внутреннего строения и размеров), которые приобретают подвижность при достижении предела текучести. -Однако в связи с обсуждением влияния гидростатического давления на рассматриваемое явление (чему уделено много внимания в настоящей главе) следует иметь в виду, что в принципе возможны различные физические механизмы, приводящие к развитию больпшх деформаций в полимерах, и различные критерии, определяющие положение и форму критических поверхностей в пространстве напряжений, причем некоторые из них могут отвечать за развитие действительных пластических, а другие — обратимых (высокоэластических) деформаций реализация же того или иного случая зависит от того, какая из раз 1ичных критических поверхностей будет отвечать меньшим значениям напряжений при выбранной геометрической схеме нагружения. Возможность существования различных критических явлений и отвечающих им разных критериев особенно важна для интерпретации наблюдаемых экспериментальных фактов, как это было показано Стернстей-ном (Доклад на II Международной конференции по деформационным, пластическим и прочностным свойствам полимеров. Кэмбридж, Англия, март 1973). [c.304]

    И образовались ленточные структуры. Такие фибриллярные образования, аналогичные наблюдавшимся Келлером [9], возникают, если пленки, в которых направление ориентации фибрилл совпадает с осью Ь кристаллов [12], растягивать в направлении, перпендикулярном оси [13]. На рис. 14 приведена электронная микрофотография, на которой видны структурные образования такого типа, полученные на поверхности пленки, согласно описанному выше методу. Можно предположить, что структуры, наблюдавшиеся Келлером, в действительности не существуют в образцах, полученных осаждением полимера из раствора, но они образуются при механических воздействиях па ламели, которые сформировались при осаждении полиэтилена. Это же относится и к фибриллярным структурам, которые показаны на рис. 10. Таким образом, никаких морфологических доказательств того, что происходит двухкомпонентная кристаллизация в форме выпрямленных и сложенных цепей, нет. Возможно, что обнаруживаемые межструктурные связи между отдельными пластинами представляют собой многочисленные спиральные наросты на ламелях. [c.104]


Смотреть страницы где упоминается термин Межструктурные связи: [c.102]    [c.139]    [c.93]    [c.184]   
Деформация полимеров (1973) -- [ c.11 ]




ПОИСК







© 2024 chem21.info Реклама на сайте