Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетический сегмент полимерной цепи в растворе

    VL3. КИНЕТИЧЕСКИЙ СЕГМЕНТ ПОЛИМЕРНОЙ ЦЕПИ В РАСТВОРЕ [c.188]

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]


    В реальных растворах взаимодействие между молекулами растворителя и полимера приводит к изменению равновесной гибкости полимерных цепей и, как результат, к изменению числа кинетически независимых сегментов макромолекул. Увеличение концентрации растворенного полимера обусловливает также возрастание вероятности столкновений сегментов соседних молекул, что соответствует интенсификации межмолекулярных взаимодействий в системе и характеризуется изменением химического потенциала Ац1 [см. уравнение (1.23)]. [c.106]

    Из данных о независимости энергии активации от длины полимерной цепи следует, что статистически независимой кинетической единицей процесса течения является некоторый среднестатистический отрезок цепной молекулы, называемый сегментом и включающий в себя несколько десятков углеродных атомов в цепи. Вязкость полимера зависит от числа сегментов, входящих в цепь, т. е. от длины цепной молекулы. Следовательно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перемещения отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения имеет место для неконцентрированных растворов, а для полимеров, находящихся в конденсированном состоянии, механизм течения более сложен. В отсутствие внешних сил перемещения сегментов происходят по всем направлениям пространства. Наличие внешней силы приводит к перераспределению направлений перемещений сегментов таким образом, что число их в направлении действия силы возрастает, а в противоположном — уменьшается (это явление может быть названо вынужденной диффузией сегментов). [c.147]

    Повышение температуры обычно приводит к снижению вязкости растворов полимеров. Однако в ряде случаев, когда полимерные цепи имеют значительную длину и высокую гибкость, с повышением температуры увеличивается интенсивность кинетического движения сегментов, возрастают силы отталкивания между макромолекулами-клубками и вязкость раствора может возрасти. уУ Вязкость разбавленных растворов находится в прямой зависимости от величины молекулярного веса полимера и концентрации раствора. Эта зависимость лежит в основе вискозиметрического [c.79]


    Кинетическая гибкость может проявляться как в растворе, так и в конденсированных полимерных телах. В первом случае она проявляется наиболее ярко в гидродинамическом поле. При действии больших напряжений сдвига макромолекулы разворачиваются. Кинетическая гибкость макромолекул в растворе характеризуется величиной кинетического сегмента, т. е. минимальным отрезком цепи, который может изменять форму под действием внешней силы. Длина кинетического сегмента зависит от скорости воз- [c.71]

    Ввиду того, что низко- и высокомолекулярные соединения в жидком состоянии резко отличаются по своему строению, различаются и механизмы их вязкого течения. Это легко видеть из наблюдений за зависимостью энергии активации П вязкого течения полимерных растворов или расплавов от молекулярной массы и возрастает с молекулярной массой и достигает некоторой предельной величины. В случае парафиновой цепочки этот предел составляет 25—29 кДж/моль, для каучуков 14 кДж/моль и расплавов твердых карбоцепных полимеров 84—125 кДж/моль. Относительно низкие значения энергий активации у полимеров свидетельствуют о том, что статистически независимая кинетическая единица течения — тот же сегмент цепи, включающий в себя несколько десятков углеродных атомов хребта цепи, который является основным релаксатором и в высокоэластическом состоянии. Вязкость системы прямым образом зависит от числа сегментов, входящих в цепь. Соответственно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перехода отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения справедлив для умеренно концентрированных растворов, а для полимеров, находящихся в более конденсированном состоянии, механизм течения более сложен. [c.168]

    Данные изотермы были выведены при условии термодинамического равновесия, однако возможен и кинетический вывод через скорости сорбции и десорбции [98]. Пусть поверхность содержит Ns адсорбционных центров, способных связать по одному сегменту цепи. В растворе полимера содержится N молекул из t сегментов (из которых V сегментов при v а t связывается с поверхностью) и Л/о молекул растворителя. Доля поверхности, занятой полимерными сегментами и молекулами растворителя о, определится как [c.113]

    Аналогия между основными соотношениями, получаемыми в моделях сетки и ожерелья , позволяет связать скорость образования и длительность существования узлов сетки с измеряемыми временами релаксации системы. Значение этого результата состоит еще и в том, что он дает основание при построении механических (или молекулярно-кинетических) моделей и теорий не только разбавленных, но и концентрированных растворов полимеров ограничиваться рассмотрением поведения единичной цепи, разбиваемой на динамические сегменты. Трение при движении каждого из этих сегментов в однородной среде, окружающей цепочку, моделирует не только сопротивление перемещению макромолекулы в низкомолекулярном растворителе, но и взаимодействие данной цепочки с остальными, с которыми она образует сетку флуктуационных контактов (физических взаимодействий любого типа). Конкретные особенности строения системы должны учитываться правильным выбором закона трения. В простейшем случае это может быть линейный закон Ньютона — Стокса, а для концентрированных растворов может вводиться некоторый постоянный или переменный эффективный коэффициент трения. Конкретная форма закона трения может быть либо -априорной, либо найденной из каких-либо физических соображений. Но в любом случае существует возможность рассматривать поведение отдельной макромолекулярной цени для моделирования проявления вязкоупругих (релаксационных) свойств любых полимерных систем, включая концентрированные растворы и расплавы полимеров. [c.298]

    Остается еще установить, однако, действительно ли наиболее устойчивое состояние достигается при реальных условиях кристаллизации. Для этого нужно принять во внимание, что рост кристалла происходит с конечной скоростью. Хорошо известно, что при всех переходах жидкость — кристалл действуют кинетические факторы, так что достигнутое конечное состояние представл-яет собой некоторый компромисс между равновесием и необходимостью развития процесса с конечной скоростью. Это верно как для мономерных, так и полимерных веществ. Далее, в разбавленном растворе полимера время релаксации больших сегментов слишком велико по сравнению с высокой скоростью наслаивания цепей на растущей грани. При этом молекулярный вес должен существенно влиять на скорость роста [61]. Аномально низкие энтальпии и плотности пластинок, полученных из разбавленных растворов, отчетливо показывают, что в реальных условиях кристаллизации не достигается наиболее устойчивое состояние. [c.305]


    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    Описанные выше динамические модели полимерной цепи, в особенности модели с внутренним трением, — результаты ЧЭ на ЭВМ (методом БД) и вьшоды из наблюдаемых экспериментальных закономерностей могут служить основанием дня введения понятия кинетического сегмента (КС) цепи в растворе. Как уже говорилось, в статистической физике макромолекул статистическим сегментом (СС) называют такой участок цепи, который может ориентироваться независимо от ориентации предыдущего участка цепи. На длине СС теряется ориентационная, д1амять о предыдущем сегменте. Тогда естественно, было бы определить КС как минимальный фрагмент цепи, который может независимо от соседей изменять во времени свою ориентацию в пространстве, совершать перескок или локальный изгиб независимо от соседних фрагментов. [c.188]

    Для полимеров нехарактерно полное превращение реагирующих функциональных групп, которое определяется не только стехиометрией реакции, но и наличием макромолекул как кинетических единиц. В процессе химических реакций в полимерных цепях лишь часть функциональных групп участвует в той или иной реакции, а другая часть остается неизменной вследствие трудности доступа реагента к функциональным группам, например внутри свернутой макромолекулы, или вследствие наличия каких-либо видов надмолекулярной организации в полимерах, нли в результате малой подвижности сегментов макромолекул в массе, в растворе и т. д. При этом должно соблюдаться условие, чтобы скорости диффузии реагирующих компонентов не являлись лимитирующим фактором, т. е. скорость химической реакции не должна контролироваться диффузией и скоростью растворения реагирующих веществ. Речь идет, таким образом, о влиянии чисто полимерной природы вещества на характер химических реакций и степень превращения компонентов. В любой макромолекуле полимера после химической реакции всегда присутствуют химически измененные и неизмененные звенья, т. е. макромолекула, а следовательно, и полимер в целом характеризуются так называемой композиционной неоднородностью. Она оценивается по двум показателям неоднородность всего состава в общем, т. е. композиционный состав конечного продукта (процент прореагировавших функциональных групп) и неоднородность распределения прореагировавших групп по длине макромолекуляриых цепей. Неоднородность может иметь различный характер сочетания одинаковых звеньев измененных и неизмененных функциональных групп статистическое их распределение по длине цени с ограниченной протяженностью (диады, триады, т. е. два, три одинаковых звена подряд) или более протяженные типа блоков в блок-сополимерах (см. ч. Г). Малые по длине участки одинаковых звеньев могут быть расположены вдоль цепи тоже статистически или регулярно и таким образом композиционная неоднородность полимеров после каких-либо химических реакций имеет достаточно широкий спектр показателей, которым она характеризуется. [c.216]

    Так, например, изучение сорбции или процесса растворения низкомолекулярных веществ полимерами показало, что образующиеся при этом растворы являются истинными равновесными растворами и подчиняются термодинамическим закономерностям, как и низкомолекулярные системы. Это происходит потому, что полимер ведет себя в смеси (растворе) так, как будто индивидуальной кинетической единицей является не вся макромолекула полимера, а отдельные отрезки длинной молекулы, способные независимо перемещаться относительно друг друга. Отсюда следует, что истинная молярная доля полимера в смеси меньше, чем теоретически вычисленная по закону Рауля. Отклонение от закона Рауля позволило рассчитать эффективную или кажущуюся молекулярную массу полимера, т. е. величину термодинамического сегмента, играющего роль отдельной молекулы в процессе сорбции. Причем величина сегмента зависит также от концентрации раствора, из которого ведется сорбция, меняясь от величины, близкой к одному звену полимера в очень концентрированных растворах, до величины всей макромолекулы в бесконечно разбавленном растворе. Так, для изопарафинов кажущаяся молекулярная масса составляет 1000, т. е. на один сегмент приходится 10—12 мономерных звеньев, а для жесткоцепных полимеров, таких, как поливиниловый спирт и полиакриловая кислота, молекулярная масса сегмента близка к истинной молекулярной массе полимера, что свидетельствует о высокой жесткости данных макромолекул. Появление в полимерной цепи радикалов —СНз, —С2Н5 в ряде случаев повышает ее гибкость, о чем свидетельствует уменьшение величины сегмента. Это было доказано сорбционным методом при изучении группы полиолефинов гибкость возрастает от полиэтилена к полибутилену сегмент полиэтилена состоит из 60, полипропилена из 40, полибутилена из 30 углеродных атомов. [c.58]

    Первые экспериментальные данные, появивщиеся в литературе по изучению электрооптических свойств гибкоцепных полимеров в растворе [15—17], подтвердили основные выводы теории. Оказалось, что макроскопическая анизотропия раствора, вызванная электрическим полем, практически не зависит от молекулярной массы полимера и обычно мало отличается по значению и совпадает по знаку с эффектом, наблюдаемым в растворе соответствующего мономера равной массовой концентрации [15—22]. Рядом авторов были предприняты попытки связать постоянную Керра/С полимеров в растворе с параметрами внутреннего вращения в полимерной цепи [23—26]. Экспериментально наблюдавшаяся зависимость К от молекулярной массы М [17—22, 27, 29] объяснялась либо различной тактичностью цепей [24], либо эффектами исключенного объема [25]. Однако имеющиеся экспериментальные данные [17—22] свидетельствуют о том, что различия в значениях К в ряду молекулярных масс весьма малы и практически лежат в пределах ошибок опыта. Сильная зависимость постоянной Керра от М, наблюдавшаяся в растворах поливинилхлорида [27] и поливинилбромида [28], по-видимому, является следствием неполной растворимости указанных полимеров в используемых растворителях [29—31]. Тот факт, что значение К для растворов гибкоцепных полимеров не превосходит, а нередко и меньше значения К для раствора соответствующего мономера, означает, что анизотропия, а следовательно, и размеры электрического сегмента (кинетической единицы), независимо ориентирующегося в электрическом поле, значительно меньше анизотропии (и размеров) сегмента Куна, который у большинства гибкоцепных полимеров содержит 5 = 6—8 мономерных звеньев [Ю]. В этом наглядно проявляется механизм поляризации гибкоцепных полимеров вращение каждого мономерного звена цепи происходит практически независимо от других. Нередко получаемое значение 5<1 обычно трактуется как проявление взаимодействия между звеньями, препятствующих их вращению [32]. [c.36]

    Макромолекулы обладают определенной гибкостью, обусловленной тем, что части макромолекулы могут вращаться вокруг ординарных связей. Гибкость макромолекул, наблюдаемая при экспериментальном изучении растворов полимеров, определяется именно свойствами ординарных связей [31]. При изучении низкомолекулярных веществ было показано, что вокруг таких связей осуществляется вращение частей молекул, заторможенное в той или иной степени равновесные положения частей молекулы относительно друг друга разделены потенциальными барьерами [31 [. Внутреннее вращение происходит в полимерных цепях, содержащих ординарные связи, и имеет характер микроброунов-ского движения. Молекула непрерывно флюктуирует, приобретая множество различных конформаций. Если же отдельные звенья цепи обладают некоторой свободой вращения друг относительно друга, то степень корреляции между направлениями этих звеньев с увеличением расстояния между ними быстро убывает. Движения достаточно удаленных звеньев независимы друг от друга. Учет заторможенности вращения в полимерной цепи был впервые проведен Бреслером и Френкелем [32]. Дальнейшее развитие эта идея получила в работах Волькенштейна с сотр. Оказалось, что изолированную макромолекулу можно представить состоящей из большого числа независимых элементов—сегментов, причем длина сегмента определяется длиной мономерного звена и потенциалом торможения при внутреннем вращении вокруг ординарной связи, который возрастает при введении в молекулу полярных и больших по размеру атомов и групп атомов. Движение макромолекул в форме сегментального теплового движения возможно при условии, что тепловая энергия кинетических единиц сравнима с потенциалом внутреннего вращения или больше его. Это наблюдается как вблизи температуры стеклования Т , так и в области более высоких температур. Так, из рис. 6 следует, что вблизи 80 при нагревании коэффициент теплового расширения полиэтилентерефталата резко увеличивается. При температурах ниже подвижность основных цепей макромолекулы мала, и полимер находится в стеклообразном состоянии. При полимер переходит в высокоэластическое состояние и приобретает способность к большим обратимым деформациям. [c.24]

    Все сказанное выше относится прежде всего к трансляционной диффузии низкомолекулярных веществ в эластомерах, растворах и расплавах полимеров. Поскольку в этих системах молекулярная масса диффузанта много меньше М2 макромолекул, образующих диффузионную среду, очевидно, что в образовании микрополости участвует лишь небольшой участок молекулярной цепи — кинетический сегмент (jumping unit), а не вся цепь в целом. Таким образом, в этом случае имеется в виду только локальный характер молекулярных движений в полимерных молекулах, наличие поворотных изомеров и кинематических ограничений. [c.22]

    По данным Такаянаги с сотр. [31], в результате отжига рыхлые петли, образовавшиеся Нри осаждении кристаллов полибутена-1 из раствора, переходят в плотные петли, как и следовало ожидать. На основании этих результатов можно предположить, что в ходе изотермической кристаллизации должна также суш,ествовать движу-ш,ая сила, способствуюш ая переходу из конформации рыхлой петли в конформацию плотной петли, однако вследствие того, что природа полимера, условия кристаллизации (в особенности температура) и т1 д. оказывают суш,ественное влияние на этот процесс, окончательно решить вопрос о том, происходит или же не происходит структурная реорганизация в полимерных кристаллах, очень трудно. Недавно ДиМарцио [32] предложил новую кинетическую теорию кристаллизации с учетом структуры складки, которая предсказывает, что уже в ходе процесса кристаллизации (т. е. осаждения сегментов макромолекул) следует ожидать резкого складывания цепей. [c.226]

    Доля межмолекулярных реакций увеличивается при возрастании концентрации полимера. В [24] установлено, что хотя увеличение концентрации полимера вдвое и приводит к удвоению содержания внутримолекулярных продуктов превращения, в еще большей степени возрастает доля межмолекулярных продуктов. Следовательно, повышение концентрации полимера сильнее воздействует на межмолекулярпые реакции. Чем больше происходит межмолекулярных взаимодействий, тем меньше протекает полимераналогичных реакций и тем труднее определить кинетические параметры. Сложность реакций на полимерах затрудняет их математическое описание и позволяет сделать только качественные заключения [56]. Особенно затруднен анализ при образовании нерастворимых продуктов в результате сшивания. Подвижность сегментов в перепутанных полимерных клубках играет в реакциях полимер — полимер большую роль. Стерические факторы и ограниченная подвижность цепей вляются причиной того, что в концентрированных растворах полимеров клубки очень мало проникают друг в друга и соединяются только в зонах контакта [45]. Степень превращения при таком межмолекулярном сшивании в случае полимеров с различными функциональными группами составляет 15—20% и никогда, даже при применении низкомолекулярных сшивающих агентов, не достигает 100%. Одновременно протекающие при этом внутримолекулярные реакции составляют лишь малую долю. При исследовании прививки иолиметилмета-крилата (ПММА) к полистириллитию установили [57], что в бензоле и толуоле, т. е. в хороших для ПММА растворителях, реакция идет быстрее, чем в тетрагидрофуране — плохом растворителе. Это может быть объяснено только различиями в конформации цепи. В хорошем растворителе макромолекулы имеют форму статистических клубков, тогда как в плохом они находятся в виде более компактных глобул. [c.22]

    Фактором, определяющим кинетику изменения поверхностного натяжения во времени, по мнению авторов [8], является диффузия молекул из объема в поверхностный слой. К сожалению, при рассмотрении поведения ПАВ полимерной природы не было принято во внимание, что наряду с диффузией в самом адсорбционном слое протекают процессы переупаковки сегментов и изменения конформации молекул, которые также влияют на поверхностное натяжение раствора. Если же учесть это, то становится понятной отмеченная авторами [8] зависимость времени достижения Оравн от длины оксиэтиленовой цепи при концентрации полиэтиленгликолей выше критической концентрации мицеллообразования (ККМ). В этом случае в кинетической картине образования адсорбционного слоя на первый план выступают именно конформационные изменения цепей молекул в поверхностном слое. [c.189]


Смотреть страницы где упоминается термин Кинетический сегмент полимерной цепи в растворе: [c.37]    [c.237]   
Смотреть главы в:

Физическая кинетика макромолекул  -> Кинетический сегмент полимерной цепи в растворе




ПОИСК





Смотрите так же термины и статьи:

Сегмент



© 2025 chem21.info Реклама на сайте