Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение материала и межмолекулярные связи

    При рассмотрении разрушения полимеров в общем виде необходимо учитывать противодействие разрушению как межмолекулярных, так и химических связей. Если разрушение полимерного материала осуществляется в условиях, когда структура материала в ходе разрушения остается постоянной, то процесс подчиняется общим закономерностям прочности. Если же при разрушении полимерного материала реализуется его способность к высокоэластической деформации, сопровождающейся увеличением анизотропии материала, то условие, при котором разрыв подчиняется общим закономерностям, не соблюдается. [c.219]


    Наряду с разрушением и образованием связей, обусловленных межатомными и межмолекулярными взаимодействиями, относительное скольжение сопровождается деформированием материала поверхностных слоев в зонах фактического касания. Сопротивление скольжению, обусловленное этим деформированием, называют деформационной составляющей силы внешнего трения. Ее величина существенно зависит от вида деформаций в зонах фактического касания. Анализ напряженного состояния в зонах реального контакта и проведенные исследования показывают, что обычно более твердые микронеровности одного из контактирующих тел внедряются в менее твердую поверхность другого. Различие в твердости контактирующих тел объясняется механическими и геометрическими неоднородностями свойств поверхностных слоев. [c.78]

    Механизм разрушения, обозначенный в табл. 11.2 как вязко-упругий, характеризуется протеканием процессов деформационного микрорасслоения материала на тяжи, подобно микрорасслоению полимера в трещинах серебра , но этот процесс выражен более отчетливо. По мере углубления зоны разрушения один за другим образуются и рвутся тяжи. Разрыв отдельных тяжей происходит в различных местах по их длине, поэтому после сокращения концов тяжей на поверхностях разрушения возникают бугорки и впадины, образующие в совокупности шероховатую поверхность. Образование тяжей связано с преодолением в основном межмолекулярных связей, а механизм медленного разрыва эластомеров в целом состоит из элементарных актов, включающих как преодоление межмолекулярного взаимодействия при образовании тяжей, так и последующий разрыв химических связей при обрыве тяжей. Основной вклад в долговечность эластомеров дает медленная стадия разрушения, где скорость процесса разрушения лимитируется не разрывом химических связей, а вязкой деформацией в микрообъемах, приводящей к микрорасслоению материала. [c.336]

    При анализе кинетики релаксационного разрущения необходимо учитывать некоторые специфические микро-процессы. Известно, что структура полимеров состоит из агрегатов с различной степенью подвижности. Поэтому в процессе нарастания вязких деформаций может оказаться, что соседние молекулярные сегменты перемещаются с различной скоростью. Это явление непосредственно связано с наличием релаксационного спектра. В таких условиях действующие между элементами цепей межмолекулярные силы, суммируясь, вызывают концентрацию напряжения и разрушение отдельных валентных связей. Таким образом в структуре изделия появляются микродефекты. В условиях релаксации, когда напряжение в материале непрерывно убывает, они могут и не привести к нарушению сплошности. Критерием здесь оказывается скорость релаксации, которая зависит от физической природы материала, напряжения, температуры и других внешних факторов. [c.211]


    Так как при квазиравновесном способе деформации все модельные вулканизаты характеризуются равными значениями разрушающего напряжения, а существенное различие в энергиях межмолекулярного взаимодействия (оцененное количественно) при таком способе испытания на разрушающем напряжении не сказывалось, то это дает основание утверждать, что при таком способе испытания ответственными за сопротивление разрыву являются в основном химические связи. Значение разрушающего напряжения определенное при деформировании квазиравно-весным способом, характеризует противодействие химических связей разрушению материала. [c.182]

    Рассмотрим предположительный механизм разрыва эластомера с развитой пространственной структурой. Выше было показано, что в рассматриваемом случае необходимо одновременно преодоление связей обоих типов. Напряжение я в месте роста области разрыва так же, как и номинальное напряжение, складывается из противодействующих разрыву сил главных валентностей Стх и межмолекулярных сил а . Величина ст, зависит от температуры опыта, скорости деформации, степени набухания образца. Рассматривая разрушение и восстановление межмолекулярных связей в результате теплового движения, мы пришли к выводу, что а, , аналогично противодействию вязкому течению должно быть обратно пропорционально вероятности разрыва связей флуктуациями тепловой энергии и прямо пропорционально скорости деформации материала в месте распространения разрыва связей под действием напряжения или, что то же, скорости распространения надрыва о. То же самое относится и к химическим связям, которые значительно реже по сравнению с межмолекулярными связями разрушаются под действием теплового движения кинетических единиц. [c.183]

    В соответствии с уравнением (IV. 12) противодействие разрыву со стороны межмолекулярных связей должно ослабевать с уменьшением удельной когезионной энергии полимера. В самом деле, если удельная когезионная энергия материала и объем, в котором происходит элементарный акт разрушения, равен а, то [c.184]

    Дополнительная ориентация высокоэластических полимеров под нагрузкой приводит к усиленному распространению опасного дефекта и рассасыванию перенапряжений в менее опасных дефектных местах. Увеличение температуры в пределах высокоэластической области сопровождается увеличением разрывного удлинения и ориентации полимера за счет ослабления межмолекулярных связей и увеличения подвижности сегментов (рис. 141). При понижении температуры удлинение и ориентация уменьшаются, а при переходе к стеклообразному состоянию ориентация проявляется только при высоких напряжениях, соответствующих вынужденной эластичности. Вместе с тем разрушающее напряжение с понижением температуры увеличивается, разрушение становится хрупким, прочность материала увеличивается, так как термофлуктуационные процессы в нагруженном полимере значительно ослабевают. [c.232]

    В литературе приводятся данные о временной зависимости прочности полимеров, которые не подчиняются уравнению Журкова. Основной причиной отклонения считают изменение коэффициента у в формуле (2.7). Естественно, что и в исследованных нами случаях при проявлении вынужденно-эластических и высокоэластических деформаций следует ожидать уменьшения у, соответствующего упрочнения материала и изменения наклона прямых в координатах lgT = /(a-). Однако, если обратиться к зависимостям e — f(a) (см. рис. 2.140), то легко обнаружить, что и в области температур, при которых относительные удлинения при разрыве сокращаются с уменьшением напряжений, U также снижается. Нам представляется, что в данном случае снижение U в основном связано с изменением механизма разрушения полимера (возрастает вклад разрыва межмолекулярных связей в развитие трещин разрушения). [c.103]

    Вопрос о том, изменяется ли химическая структура материала при разрушении, существенно важен, так как ее изменение усложняет закономерности разрушения. Химическая природа вещества может не изменяться только при разрыве межмолекулярных связей, который происходит при образовании молекулярных растворов, под действием теплоты (до температуры разложения), а иногда и при механическом воздействии (например, при разрушении молекулярных кристаллов — парафинов, нафталина и т. п.). [c.8]

    Набухая в пластификаторе, полимер образует гомогенную массу, вязкость которой зависит от содержания и типа пластификатора. Гомогенизации способствует пластикация материала — разрушение надмолекулярной структуры при тепловом и механическом воздействии. В непластифицированном ПВХ наличие сетчатой структуры, образованной прочными межмолекулярными связями, приводит к химическому течению в процессе переработки. Это явление, характеризующееся падением вязкости под действием больших сил, объясняется разрывом химических связей вдоль молекулярных цепей и уменьшением молекулярной массы полимера. Рекомбинация образующихся при этом свободных радикалов может вести к частичной сшивке полимерных цепей, в результате чего вязкость полимера вновь возрастает. Небольшое количество пластификатора затрудняет образование сетчатой структуры, увеличивая гибкость структурных элементов, и облегчает переработку ПВХ. [c.159]


    Если сопротивление разрушению определяется противодействием сил главных валентностей, то, естественно, что достигнуть определенную прочность можно уже при синтезе полимеров с прочными химическими связями в основной цепи. Чем прочнее эти связи, чем больше значение энергий этих связей, тем прочнее должен быть полимер. Разрыв химических связей обуславливает прочность материала только при достаточно больших значениях молекулярный массы. При этом энергия суммарного противодействия отрыву элементов структуры друг от друга за счет межмолекулярного взаимодействия должна быть больше энергии рвущихся химических связей [297, с. 314]. Увеличение числа химических связей, несущих нагрузку, сопровождается увеличением прочности материала также в случае трехмерных структур, содержащих химические связи. Это происходит, например, при химическом сшивании молекул полимера. В дальнейшем будет показано, что ориентация анизодиаметричных элементов структуры способствует преимущественному разрыву химических связей. [c.235]

    Разрушение — процесс, протекающий во времени. Даже при низких температурах действует температурно-временная зависимость прочности, согласно которой материал разрушается не мгновенно, а постепенно за счет накопления во времени элементарных актов разрушения химических, межмолекулярных и других связей. Разрушение наступает в тот момент, когда происходит полное исчерпание долговечности. Если нагрузка мала или прикладывается медленно, долговечность материала больше, и наоборот. Отсюда и обратная зависимость если скорость приложения нагрузки велика, мате- [c.146]

    Этот экспериментальный факт, интересный сам по себе (долговечность больше у нагруженного материала, чем у ненагруженного), объясняется тем, что в высокоэластическом состоянии большую роль играют межмолекулярные связи. Они берут на себя часть нагрузки, выключая из работы химические связи. При малых напряжениях скорость процесса разрушения невелика, и межмолекулярные связи, принимая нагрузку на себя, способствуют более равномерному распределению напряжения. Отсюда характерный вид графиков тем-пературно-временной зависимости прочности для термореактивных полимеров (рис. .6). [c.386]

    Вещественную основу термопластов, полученных полимеризацией, образуют макромолекулы, состоящие из более или менее переплетенных молекулярных цепей. (Поэтому их и называют линейными полимерами.) Внутри цепных молекул связь между атомами осуществляется внутримолекулярными валентными силами, а между макромолекулами - межмолекулярными силами. Предпосылка для действия этих сил-бифункциональные молекулы, которые обнаруживают два реакционноспособных центра. Для внутри- и межмолекулярных сил характерно существенное (приблизительно в 10 раз) различие в энергиях связи. Это обстоятельство имеет практическое значение. Межмолекулярные силы из-за малой энергии связи уже при относительно низких температурах перестают существовать, что приводит к свободе передвижения цепных молекул. При охлаждении побочные валентные межмолекулярные связи снова восстанавливаются. Эта особенность поведения используется во многих технологических процессах переработки термопластов, например при прессовании и литье под давлением. При повышении температуры сверх некоторого предела валентные связи также разрушаются. Но в отличие от побочных валентных межмолекулярных сил этот процесс уже необратим. Он сопровождается разрывом цепей нитевидных молекул и ведет к полному термическому распаду и разрушению высокополимерного материала. [c.80]

    Величина Цо характеризует энергию связей, которые надо разорвать при разрушении материала. Для высокоориентированных волокон величины Уо колебались в пределах от 35 до 56 ккал/моль, что соответствует энергии химической связи. Это дало основание утверждать, что разрыв происходит по химическим связям [15, 16, 18]. При введении пластификаторов в волокнообразующие полимеры прочность волокна уменьшалась в 1,5 раза, а значение и о не изменялось. Это тоже свидетельствовало в пользу представлений, основывающихся на разрыве химических, а не межмолекулярных связей. [c.240]

    Величина зависит от температуры опыта, скорости деформации, степени набухания образца. Рассматривая разрушение и восстановление межмолекулярных связей в результате теплового движения, мы пришли к выводу, что 0 , аналогично противодействию вязкому течению, должно быть обратно пропорционально вероятности разрыва связей и прямо пропорционально скорости деформации материала в месте распространения разрыва, или. что то же, скорости распространения разрыва и . То же самое относится и к химическим связям, которые, однако, значительно реже разрушаются под действием теплового движения кинетических единиц, чем межмолекулярные связи. [c.177]

    В стеклообразных телах отсутствует дальний порядок в расположении атомов и молекул. Отсутствие дальнего порядка не позволяет выбрать в стекле какую-то особую поверхность скольжения АВ, как в кристаллическом теле. Вследствие отсутствия дальнего порядка в стекле при разрыве межмолекулярных (или химических) связей в процессе деформации только небольшая часть их сможет затем восстановиться, что приводит уже не к пластическому, а к хрупкому разрушению материала. Опыт показывает, что в условиях длительного действия нагрузки типичный поликри-сталлический материал, например сталь, течет несравненно быстрее, чем стекло. [c.140]

    Одним из первых результатов воздействия на полимер при-ложенного напряжения является разрушение материала на над-молекулярном уровне, которое происходит вследствие нагружения как внутри-, так и межмолекулярных связей. Когда приложенное напряжение превышает определенное, достаточно высокое, критическое значение, начинается разрыв цепей полимера. Считается, что ниже этого критического напряжения или вообще нет деструкции, или она незначительна. Изменение величины сдвиговых напряжений, турбулентность и наличие областей с избыточной энергией, т. е. неоднородность молекулярной структуры и сдвиговых напряжений, конечно, могут повлиять на деструкцию материала. Если деформируется раствор, степень механохимических превращений зависит также от концентрации и природы растворителя (см. гл. 8). Разрыв цепей практически во всех случаях сопровождается такими структурными изменениями, как снижение молекулярной массы, изменение ММР, образование разветвленных цепей, поперечных связей и новых функциональных групп. Эти эффекты в свою очередь могут вызвать изменение свойств полимера (химических, физических, механических и реологических). Полученные результаты зависят от того, в каких [c.17]

    При сжатии порошка вначале, при давлениях до 30 МПа, масса уплотняется вследствие переупаковки частиц, скольжения их друг относительно друга (квазивязкое течение). Происходит некоторое разрушение частиц. При более высоких давлениях (30—100 МПа) уплотнение сопровождается хрупкой (дальнейшим разрушением частиц) и пластической деформацией и рекристаллизацией. Вначале на сцепление частиц оказывают влияние силы межмолекулярного и электростатического взаимодействий, затем, при больших давлениях, происходит упрочнение материала вследствие увеличения числа контактов между осколками и образования соединений с ковалентными связями. Температура системы повышается. Необратимые процессы уплотнения сопровождаются диссипацией механической энергии, превращающейся в тепловую, расходующуюся на рекристаллизацию, а в многокомпонентных смесях — и на возможные твердофазные реакции. Могут образовываться твердые растворы. Система стремится перейти в состояние с минимумом энергии Гиббса. [c.294]

    Автором [8, с. 145 9, с. 474 140, с. 953] были развиты представления о механизме разрыва сшитых эластомеров и предложена аналитическая зависимость между разрушающим напряжением Ор, удельной когезионной энергией U Jol (а — элементарный объем разрушения), температурой, скоростью растяжения V и другими факторами, влияющими на прочность материала. Эти представления основаны на том, что разрыв вулканизатов происходит путем разрастания трещин и надрывов, которые в дальнейшем называются микродефектами. Разрастание микродефектов происходит не постепенно, а в результате элементарных актов разрыва одновременно некоторого числа связей (химических и межмолекулярных). [c.155]

    При достаточно низких температурах полимер данного строения характеризуется эффективным межмолекулярным взаимодействием. При этом прочность связей межмолекулярного взаимодействия, суммируясь по поверхности раздела структурных единиц, превышает прочность химических связей в элементе структуры. Разрушение в этих условиях сопровождается разрушением химических связей. При подборе полимерного материала, работающего в этих условиях, целесообразно использовать либо достаточно полярный материал с большим значением удельной когезионной энергии, либо сшитый материал, представляющий трехмерную сетку, состоящую из атомных групп, связанных ковалентной связью. Увеличение прочности достигается за счет синтеза материала с более прочными связями между атомными группировками. Естественно, что эксплуатация материала при достаточно низких температурах эквивалентна эксплуатации при больших скоростях нагружения. [c.296]

    Кроме улетучивания растворителя протекают и другие процессы, связанные с уменьшением объема пленки химическая усадка, сопутствующая образованию химических связей. При этом изменяются межмолекулярные расстояния, перегруппировка молекул происходит неравномерно, постепенно замедляясь в ходе процесса отверждения. Наименьшие внутренние напряжения возникают при склеивании эпоксидными смолами, так как они отверждаются с небольшим изменением объема и без выделения летучих продуктов. Вторая причина — это напряжения, вызванные раз личием термических коэффициентов линейного расширения (КЛР) адгезива и склеиваемого материала. Полимеры имеют КЛР в 6—10 раз больше, чем дерево, стекло, металлы. Напряжения возникают в тех случаях, когда отверждение клея проводят при повышенной температуре, а затем температура пони-жается. Эти напряжения могут быть уменьшены при постепенном остывании склеенного изделия. У комбинированных из разных материалов конструкций это может быть причиной деформации и даже разрушения. [c.66]

    На скорость и характер процесса разрушения нагруженного образца любого материала оказывает влияние напряженное состояние этого материала. Воздействие жидких сред значительно осложняет картину разрушения материалов по сравнению с разрушением в вакууме или на воздухе. Кинетика разрушения в этом случае может определяться не только частотой термических флуктуаций связей, ускоряемых действующими в вершине разрушающей трещины напряжениями, но также процессами поверхностного, объемного, физического и химического взаимодействия полимера и среды, процессами растворения и резкого ослабления межмолекулярного взаимодействия в полимере, скоростью проникания среды к перенапряженным участкам полимерного образца и т. п. Поверхностно-адсорбционные эффекты воздействия среды усиливают действие механических напряжений, [c.120]

    В монографии ученого из Швейцарии рассматриваются природа и закоиомериости разрушения, а также деформирования полимеров. Материал изложен с позиций механики твердого тела и физики процесса разрушения химических и межмолекулярных связей. [c.4]

    Несмотря на общность генезиса надмолекулярный и морфологический структурные уровни достаточно четко идентифицируются многими методами. Например, при деформации целлюлозных волокон в набухшем (высокоэластическом) состоянии в первую очередь претерпевает изменения морфологический уровень, характеризующий взаимное расположение фибрилл. При пластификаци-онной вытяжке вискозных волокон и пленок их кристалличность, характеризующая структуру фибрилл, остается неизменной, в то время как некоторые структурные показатели, зависящие от взаимного расположения фибрилл — макропористость, накрашивае-мость и набухание существенно изменяются. При гидролитической, окислительной или термической деструкции распад материала происходит в первую очередь на морфологическом уровне, т. е. целлюлозный материал распадается на фибриллы вследствие разрушения менее прочных межмолекулярных связей на поверхности фибрилл и разрыва небольшого числа проходящих цепей. [c.24]

    Итак, быстрый разрыв происходит без образования надрывов, в результате прорастания треш,ин разрушения, медленный—путем образования и прорастания надрывов . В первом случае поверхность разрыва гладкая, во втором—шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающие шероховатую зону поверхности разрушения, на второй— дефекты в виде трещин, дающие гладкую зону. В соответствии с этим разрушение резин происходит вследствие роста дефектов двух видов надрывов и трещин . Механизм разрушения ири прорастании трещин в резине аналогичен таковому ири разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. Образование сильноориентированных тяжей на первой стадии разрушения связано с преодолением межмолекулярных связей. Поэтому молекулярный механизм медленного разрыва высокоэластичных полимеров состоит из элементарных актов, включающих преодоление межмолекулярного взаимодействия при образовании тяжей и разрыв химических связей. [c.111]

    Физически обоснованной характеристикой прочности полимеров служит долговечность, определяемая временем, проходящим с момента приложения нагрузки к образцу до его разрушения. Эта характеристика основана на кинетической концепции прочности [16—18], согласно которой процесс разрушения заключается в постепенном разрыве химических связей вследствие тепловых флуктуаций, причем диссоциация связей активируется приложенным механическим напряжением. Эта концепция развивается С. Н. Журковым с сотрудниками. Большое внимание уделяется также процессу распада межмолекулярных связей. Этот подход предложен и изучен В. Е. Гулем [19]. Существенное внимание уделяется процессу зарождения и развития микротрещин и трещин разрушения под действием нагрузки, что и определяет долговечность материала. Этот подход развивается Г. М. Бартеневым [20]. [c.82]

    Авторы отводят главную роль фактору времени, корректируя понятие предела прочности. В старом понимании этот термин означал усилие разрыва, а продолжительность действия напряжения до разрушения не принималась во внимание. В действительности это понятие подразумевает долговечность образца при данной нагрузке, а не его предел прочности. Полученное отнощение позволило сделать вывод о том, что разрыв является активационным процессом, скорость которого определяется тепловыми флуктуациями, зависящими от значений КТ. Для разрушения связей, определяющих прочность полимера, необходимо, чтобы скомпенсировался энергетический барьер 1о, величина которого зависит от природы химических связей. Установлено также, что энергетический барьер цо под действием растяжения уменьшается на значение ау. Итак, чем больше нагрузка на материал, тем меньше энергетический барьер, препятствующий процессу разрыва. Уравнение позволяет глубже выяснить механизм деструкции путем установления зависимости, существующей между энергетическим барьером хо и структурными элементами (межмолекулярными силами и химическими связями), которые обусловливают прочностные свойства исследуемого полимера. Определив энергетический барьер (Хо, авторы пришли к выводу, что значения цо по порядку величины совпадают с величиной энергии химических связей (45 ккал моль). Таким образом, разрушение полимерных волокон под действием растяжения, согласно проведенным исследованиям, развивается во времени, зависит от интенсивности нагрузки и возникает в результате разрыва химических связей. Межмолекулярные связи [c.27]

    Для решения вопроса о роли химических и межмолекулярных связей в процессе разрушения полимера было исследовано влияние ориентации (стр. 239) н пластификации (глава XX) на прочность вискозного и капронового волокон. Эги исследования1 показали, что при введении пластификатора прочность волокна понижается в 1,5 раза, в то время как величина активационного барьера (/р не изменяется. При ориентации прочность увеличивается, а величина Уд также не изменяется. Эти данные показывают, что разрыв полномерного материала происходит по химическим связям цепей главных валентностей. [c.222]

    Формула (1) выведена теоретически [3], исходя из флуктуаци-онного механизма разрушения, широко обоснована экспериментально [4] и имеет достаточно общий характер независимо от интерпретации механизма разрушения, так как подобные выражения получены на основе разных посылок [5, 6]. Особенно важной посылкой для резин является то, что существенную роль при подготовке разрыва играет вязкое перемещение молекул с разрушением межмолекулярных связей [6]. Так как формула (1) предполагает неизменность структуры материала, то ее применение для резин возможно только при учете изменения этой структуры с ростом ст (однако при отсутствии химических изменений). Поэтому полагают в формуле (1) р и 0) зависящими от ст. [c.275]

    С понижением температуры вначале, в пределах области высокоэластического состояния, затрудняется нарушение межмолекулярных связей под действием тепловых флуктуаций. Поэтому для осуществления деформации (и, соответственно, для разрушения образца) требуется все большая затрата работы. При дальнейшем охлаждении, когда уменьшается гибкость цепных молекул, число межмолекулярных связей, которые должны быть разорваны для осуществления деформации и разрыва, вследствие уменьшения степени ориентации цепей также становится меньше. Деформация и разрыв материала в стеклообразном состоянии сопряжены с разрывом меньшего числа межмолекулярных связей, чем в высокоэластическом состоянии. Л еньше также дополнительная ориентация стеклообразного материала в области распространения разрыва. Поэтому при переходе от [c.109]

    Рассчитывая и для разных значений разрывных напряжений, удалось установить линейную зависимость IУ=/( Tp), что псзво-лило графически определить свободный член 1/ и угловой коэффициент у. Естественно, что определение этим способом значений Оо н у возможно только при неизменности структуры материала, т. е. неизменности значения 7. Для ряда волокон были определены значения (/ . Величина характеризует энергию связей, которые надо преодолеть при разрушении материала. Для высокоориентированных волокон величины колебались в пределах от 35 до 56 ккал моль, что соответствует энергии химической связи. Это дало основание С. Н. Журкову утверждать, что разрыв происходит по химическим связям [17, 19, 22]. При введении пластификаторов в волокносбразующие полимеры прочность волокна уменьшалась в 1,5 раза, а значение Uf не изменялось. Это тоже свидетельствовало в пользу представлений, основывающихся на разрыве химических, а не межмолекулярных связей. Однако все эти доказательства относятся к предельно ориентированным полимерам, в которых силы межмолекулярного взаимодействия, суммируясь по длине макромолекул, превосходят прочность хи.мической связи между звеньял и одной цепи. В этих условиях рвется наиболее слабая химическая связь, которая и определяет, в основном, прочность полимера. Если же полимер не находится в предельно ориентированном состоянии, то разрушение происходит по границе раздела надмолекулярных образований. Суммарное противодействие разрыву сил межмолекулярного взаимодействия сравнимо с противодействием сил химических. [c.238]

    Поскольку разрушение полимерного материала представляет собой кинетический процесс, его скорость определяется величиной приложенного напряжения и температурой. С повышением температуры возрастает кинетическая энергия звеньев цепных молекул, снижается время релаксации и уменьшается число межмолекулярных связей, цесущих нагрузку. Аналогично действует увеличение скорости деформации в изотермических условиях — оно вызывает уменьшение числа межмолекулярных взаимодействий, разрушающихся за время действия силы и, следовательно, не участвующих в распределении напряжений по объему образца. [c.89]

    Увеличение температуры сопровождается учетвереннем числа свободных радикалов в момент макроскопического разрушения. Во-первых, как уже отмечено, прочность связи в таком случае убывает и таким образом облегчается разрыв цепей при данном молекулярном напряжении. Во-вторых, уменьшение межмолекулярного притяжения и увеличение подвижности молекул вызывает более быструю релаксацию молекулярных напряжений. По той же причине, в-третьих, плотность накопленной энергии упругой деформации при данной величине деформации убывает, что в свою очередь будет влиять на стабильность и распространение трещин. В-четвертых, возросшая реакционная способность свободных радикалов может увеличить несоответствия между концентрациями образованных свободных радикалов и обнаруженных радикалов в момент ослабления материала. [c.205]

    Независимость. энергии активации разрыва от напряжения может быть объяснена, следовательно, молекулярнокинетической природой упругости высокоэластических. материалов. Этот факт сближает процесс разрушения каучукоподобных полимеров с процессом их вязкого течения, так как энергии активации обоих процессов не только не зависят от напряжения, но в отдельных случаях совпадают по величине (энергия активации вязкого течения каучука СКС-30 равна 13 ккал/моль). Это свидетельствует о тесной связи процессов разрушения и вязкого течения каучукоподобных материалов и позволяет обосновать возможность применения к ним метода обобщенных координат Ферри (см. гл. II, 6). Эта связь следует также из механизма медленного разрыва резин, рассмотренного в гл. III. Образование тяжей в напряжен-нол высокоэластическом материале связано с преодсление.м межмолекулярных взаимодействий в результате скольжения отдельных участков при микрорасслоении материала. Процесс микрорасслоения, вероятно, того же рода, что и вязкое течение полимеров. [c.184]


Смотреть страницы где упоминается термин Разрушение материала и межмолекулярные связи: [c.30]    [c.223]    [c.106]    [c.177]    [c.158]    [c.135]    [c.188]    [c.188]    [c.215]    [c.80]   
Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Межмолекулярные

Связь вла.ги с материалом



© 2024 chem21.info Реклама на сайте