Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерные цепи, ориентация

    Если при ассоциации регулярно построенных макромолекул в пачки создаются условия для правильной укладки не только полимерных цепей, но и боковых заместителей, то возникает трехмерный порядок во взаимном расположении частиц. Таким образом, необходимое и достаточное условие для кристаллизации полимера - правильная взаимная укладка как цепей макромолекул, так и боковых заместителей. Дальний порядок во взаимном расположении макромолекул обусловлен как определенным координационным порядком (т. е. правильным расположением их центров тяжести), так и ориентационным порядком (т.е. одинаковой ориентацией цепей в кристалле). [c.142]


    Таким образом, свойства полиуретановых эластомеров зависят от гибкости сегментов, степени разветвления полимерных цепей, ориентации сегментов, наличия водородных связей и других сил межмолекулярного взаимодействия, жесткости ароматических участков молекул и количества поперечных связей. В отличие от хорошо известных олефиновых эластомеров в уретановых эластомерах значительную роль играют водородные связи и силы Ван-дер-Ваальса. [c.341]

    Для реальных полимерных цепей ориентация полярных мономерных звеньев определяется заторможенностью внутреннего вращения в цепи [28], и дипольный момент всей макромолекулы определяется из соотношения [c.261]

    Кл-м) выше, чем дипольный момент изопрена (1,28-10 Кл-м). Высокая полярность молекулы хлоропрена способствует преобладающей ориентации звеньев в полимерной цепи в положении 1,4-1,4 [2]. [c.369]

    Образование ориентированных слоев играет также большую роль в процессах прилипания и склеивания. В этих процессах связующее вещество должно вначале быть жидким (для заполнения впадин и повышения фактической площади контакта) и затвердевать в процессах схватывания, посредством замерзания (лед), химических реакций окисления (лаки), гидратации (цемент), полимеризации (клеи) и др. Склеивание полимерных материалов осуществляется путем взаимной диффузии сегментов полимерных цепей. Силы адгезии между твердой поверхностью и затвердевшим клеем или пленкой, согласно представлениям, развитым Дерягиным, имеют во многих случаях (например, при взаимодействии металлов с полимерами) электрическую природу и определяются величиной Аф, возникающей при ориентации молекул в поверхностном слое. Поэтому при разработке новых склеивающих материалов и пленочных покрытий, широко используемых в современной технике, особое внимание следует уделять способности этих веществ к образованию ориентированных слоев. Для повышения этой способности разрабатываются специальные полярные присадки. [c.119]

    Ответ. При одинаковой степени ориентации прочность волокон зависит от суммарной энергии межмолекулярных и межструктурных контактов. Для реализации одинаковых энергетических эффектов в случае полипропилена требуются более длинные полимерные цепи, нежели в случае полиэтилентерефталата. [c.16]

    Если же полимерная цепь построена из звеньев, соединенных связями, вокруг направления которых возможно их вращение, а ориентация каждой такой связи не зависит от ориентации соседней, то такая макромолекула определяется как идеально гибкая. [c.80]


    Изложенное показывает, что ниже температуры стеклования трудно ожидать перестройки структуры, поскольку полимерные цепи практически неподвижны. Поэтому любая молекулярная ориентация, имеющаяся в стеклообразном состоянии, сохраняется практически неизменной до тех пор, пока полимер не нагревают до температуры стеклования. Замороженные деформации, присутствие которых приводит к анизотропии механических характеристик полимера в стеклообразном состоянии, являются следствием молекулярной ориентации, возникающей при деформации или течении полимеров при температуре, превышающей температуру стеклования. [c.68]

    Если конкретная кристаллографическая ось, например ось с, перпендикулярна z, то = —0,5 если она параллельна, то / = 1 наконец, если она ориентирована хаотически по отношению к z, то = 0. В выражениях (3.9-3) и (3.9-4) для одноосного растяжения /цр == /S т. е. /,,р равна степени ориентации главной полимерной цепи. [c.73]

    Определим, как н в предыдущем случае, значение степени ориентации полимерных цепей относительно направления вытяжки г. [c.75]

    Если обозначить направление действия растягивающих образец сил через г, то в качестве меры ориентации полимерных цепей можно выбрать величину соз б (здесь 0 —угол между направлением г и направлением ориентации сегментов). Когда все сегменты цепи ориентированы в одном направлении, то соз 0 = 1. Полностью ориентированный аморфный полимер можно рассматривать как один макроскопический нематический домен. [c.189]

    Природа высокой эластичности объясняется гибкостью полимерных цепей, которая отчетливо проявляется при достаточно интенсивном тепловом движении. Ничтожно малая упругая деформация полимера связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, а высокоэластическая — с ориентацией и перемещением звеньев гибких це-цей без изменения среднего расстояния между цепями. [c.61]

    Теоретическая прочность существенно зависит от структуры полимера и, в частности, от степени молекулярной ориентации. Для предельно ориентированного полимера при малых молекулярных массах, когда разрушение идет не за счет разрыва химических связей, а путем относительного сдвига полимерных цепей и преодоления межмолекулярных сил, теоретическая прочность зависит от молекулярной массы. При больших молекулярных мас сах разрушение происходит путем разрыва полимерных цепей. Расчеты прочности последних сделаны пока для полиэтилена и капрона [5]. Для этих полимеров в предельно ориентированном состоянии теоретические прочности в направлении ориентации соответственно равны 3,52-Ю и 3,00-10 МН/м2, а в поперечном направлении — 0,26-10 МН/м (для капрона). [c.282]

    Прн вытяжке происходит ориентация полимерных цепей (макромолекул) вдоль оси волокон, в результате чего повышается их разрывная прочность и уменьшается величина относительного удлинения при растяжении. [c.243]

    В области дефектов кристаллич. структуры, где плотная упаковка нарушается и, появляется нек-рый своб. объем, становится возможным изменение ориентации частиц и нарушается корреляция между конфигурациями исходного состояния хим. подсистемы, ПС и продукта. Если ПС образуется в своб. объеме дефекта, то, в отличие от р-Щ1Й в бездефектном кристалле, ASf > О, поскольку при образовании ПС появляются дополнит, степени свободы. Во мн. случаях молярный объем продукта меньше молярного объема реагирующей подсистемы, что приводит к изменению структуры продукта. Напр., при твердофазной полимеризации структура образующихся в начале процесса полимерных цепей определяется лишь структурой решетки, но по мере увеличения конверсии мономера и разрыхления  [c.210]

    Хорошим методом определения ориентации в полимерных пленках и волокнах является изучение скорости звука (или распространения звукового сигнала). Скорость распространения звука вдоль полимерной цепи намного больше, чем в направлении, перпендикулярном цепи (рис. 35.19). Скорость звука (С) в ориентированном полимере можно представить как [c.222]

    Детальное исследование микроструктуры полимерных цепей с помощью аппаратуры высокого разрешения. Метод ЯМР позволяет определить порядок присоединения мономерных единиц в цепи, характер и степень стереорегулярности полимера. Для изучения упаковки макромолекул сравнивают теоретические и экспериментальные значения второго момента спектральной линии. По соотношению узкой и широкой компонент линии поглощения можно определить динамическую степень кристалличности полимеров. Величина второго момента в ориентированных полимерах дает возможность судить об ориентации молекулярных цепей. Особо следует отметить, что ЯМР позволяет определить положение водородных атомов [5]. [c.264]

    Кристаллический полиэтилентерефталат предстанляет собой очень твердое, белое, непрозрачное вещество температура стеклования полимера 81, температура плавления 264", степень кристаллизации 55—75%. Ориентацией полимерных цепей можно повысить степень кристаллизации полиэфира. Ориентацию можно проводить медленным вытягиванием нити и./1и пленки, нагретой выше температуры стеклования. [c.423]


    Одним из параметров, характеризующих структуру полимеров, является степень ориентации кристаллитов или полимерных цепей. В случае одноосной ориентации кристаллитов полимера при произвольных поворотах вокруг оси, а также в случае, когда все макромолекулы в образце при деформации располагаются параллельно друг другу, возникает аксиальная текстура рентгенограммы причем ось вращения кристаллов или направление цепей совпадают с осью текстуры. Аксиальная текстура встречается у большинства природных и синтетических волокон и у многих пленок после одноосной деформа- [c.365]

    Следует подчеркнуть, что для полимеров в любом релаксационном состоянии характерно сосуществование всех трех видов деформаций - упругой, высокоэластической и вязкого течения - с преобладанием одного из них. Например, у линейных эластомеров (каучуков) на обратимую высокоэластическую деформацию накладывается необратимая деформация течения, причем та и другая развиваются во времени (ползучесть). Вулканизация каучука с образованием редкой сетки не мешает проявлению высокоэластических свойств, но предотвращает процессы течения. Наоборот, деформация вязкого течения расплава полимера сопровождается высокоэластической и упругой деформациями, что способствует распрямлению полимерных цепей, их ориентации и обусловливает способность полимера к волокнообразованию. [c.156]

    Любая мгновенная конформация макромолекулы полностью описывается значениями длин химических связей между атомами, валентных углов между химическими связями, примыкающими к общему атому, и углов внутреннего вращения между химическими связями, разделенными одной связью. Длины связей фиксированы с точностью до малых высокочастотных колебаний, валентные углы — с точностью до колебаний этих углов, уже не таких малых и происходящих с несколько меньшей частотой, а углы внутреннего вращения вокруг одиночной химической связи могут принимать значения в более или менее широком интервале или в нескольких интервалах значений углов. Поэтому, чем большее число связей разделяют 2 звена макромолекулы, тем в больших пределах может меняться расстояние между ними и их взаимная ориентация. Отсюда с необходимостью следует, что полимерная цепь обладает гибкостью. Заметим, что гибкость является общим свойством линейных систем — ив очень высоких металлических сооружениях, и даже в небоскребах верхняя часть колеблется с отклонением на заметный угол (подробней см. в [10]). [c.18]

    Возможность существования макромолекул в вытянутой конформации приводит к появлению в полимерных кристаллах выделенного направления — кристаллографической оси с, совпадающей с направлением вытянутых конформаций или, как чаще говорят, с главным, направлением полимерных цепей. Структурная анизотропия, характеризующаяся одним выделенным направлением, существует не только, когда цепи полностью вытянуты, но и тогда, когда под влиянием растягивающего напряжения или других сил клубки хотя бы частично разворачиваются и звенья макромолекул приобретают преимущественную ориентацию. Это приводит не только к механической и оптической, но и к термодинамической анизотропии (именно ее и обнаружил в свое время Джоуль в опытах с растягиванием каучуков). Специфичность свойств полимеров с ориентированными макромолекулами (к ним относятся все полимерные волокна, и природные, и синтетические) потребовало рассмотрения особого ориентированного состояния полимеров, которому в книге посвящена гл. XVI. [c.20]

    Ковалентная вулканизация карбоксилсодержащих каучуков придает резинам свойства, аналогичные эластомерам без карбоксильных групп. Поэтому для карбоксилсодержащих каучуков важное значение приобретает вулканизация с помощью окисей, гидроокисей и других соединений металлов за счет реакции соле-образования. Получаемые при этом резины уже при относительно низком содержании звеньев метакриловой кислоты в сополимере (1—3%) характеризуются высокими механическими и эластическими свойствами. Рентгенографически в солевых резинах при растяжении обнаружен сильный ориентационный эффект. Тем самым установлено, что дефекты в структуре полимерной цепи, обусловленные неоднородностью ее строения, и отсутствие вследствие этого склонности к ориентации и кристаллизации, могут быть компенсированы за счет изменения природы вулканизационной сетки [1]. [c.400]

    Полимерные цепи полидиорганосилоксанов имеют форму спиралей с наружной ориентацией органических групп и внутренней компенсацией диполей Si+ — 0 (у ПДМС — 6 звеньев Д в одном [c.482]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    При приложении к образцу полимера внешней нагрузки полимерные цепи в аморфных участках оказываются нагруженными неодинаково, так что максимальная нагрузка на цепь, ответственная за начало разрыва образца, в р раз больше средней нагрузки на цепь, вычисленной из условия равнонагруженности цепей (р можно назвать коэффициентом перегрузки цепей). Перегруженность цепей обусловлена многими факторами различной ориентацией цепей, наличием неоднородностей, трещин и т. п. Приближенна можно считать, что Р = Р1Рг (VI. 6) [c.202]

    Природа высокой эластичности объясняется физическими свойствами цепных молекул. Их основным свойством является внутреннее вращение связей, приводящее к гибкости и легкой свертываемости полимерных цепей. Гибкость отчетливо проявляется, когда тепловое движение достаточно интенсивно. В стеклообразном состоянии деформация связана с изменением средних расстояний между атомами и деформацией валентных углов полимерной цепи, в высокоэластическом — с ориентацией и перемещением звеньев гибкой цепи без изменения среднего расстояния между и.епями. [c.84]

    При вытяжке полимеров наблюдается процесс молекулярной ориентации. Последняя может быть заморожена последующим охлаждением вплоть до хрупкого состояния полимера. При одноосной вытяжке, имеющей наибольшее практическое значение, молекулярная ориентация характеризуется функцией распределения ориентаций сегментов полимерных цепей относительно оси вытяжки. Мерой степени ориентации служит среднее значение квадрата косинуса <соз2 0>, где 0 — угол между сегментом и осью вытяжки. При <со52 0> = /з сегменты распределены по всем направлениям равномерно (неориентированный материал), при <со520> = 1 все сегменты ориентированы вдоль оси вытяжки (предельно ориентированный материал). [c.326]

    В то же время полимеризация, индуцируемая радикалами, обладает рядом специфических особенностей. Так, например, как разветвленные, так и линейные полимерные молекулы могут быть образованы только в результате развития радикальной цепи за счет отрыва атома водорода от растущих или уже сформированных полимерных молекул, поскольку только такие отрывы могут служить точками роста цепи. Кроме того, твердые полимеры, образующиеся при радикальной полимеризации СН2 = СНХ, характеризуются стереохимически неупорядоченной ориентацией групп X относительно атомов углерода полимерной цепи. Как показывает опыт, такие полимеры, носящие название атактических, не получаются, как правило, в кристаллической форме, имеют низкую температуру плавления и обладают слабой механической прочностью. [c.295]

    Если использовать в качестве катализатора ТхСЦ-А1(Е1)з, то такой алкен, как МеСН = СН2, может быть легко подвергнут полимеризации в очень мягких условиях образующийся при этом регулярный (изотактический) полипропилен имеет кристаллическую форму и обладает высокой механической прочностью, что связано с упорядоченной ориентацией метильных групп относительно атомов углерода, образующих полимерную цепь — все метильные группы полимера направлены в одну сторону. Механизм такой упорядоченной полимеризации, в результате которой образуются изотактическне полимеры, в настоящее время еще недостаточно ясен не исключено, что при этом осуществляется ориентированный перенос молекул мономера к растущей цепи, обусловленный тем, что и мономеры, и растущая цепь связаны при этом с атомом титана. [c.295]

    Уменьшение корреляционного параметра связано с наличием взаимодействия между полярными, звеньями полимерной цепи, приводящего к некоторой ориентации звеньев и уменьшению эффективного ди-гольного момента, рассчитанного на звеио х фф полимера меньше цафф гидрированного мономера. [c.293]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    Прочность двойной связи в молекуле мономера, координированного на переходном металле, понижается это способствует вовлечению в полимеризацию малоактивных мономеров. Так, этилен полимеризуется на кат. Циглера -Натты при комнатной т-ре и давлении ниже атмосферного, в то время как радикальная полимеризация его протекает при 200-300 С и давлении 100-300 МПа. Предварит, координация создает условия для определенной ориентации присоединяющихся молекул мономера относительно полимерной цепи и тем самым обусловливает высокую регио- и стереоспецифичность актов роста. Напр., с чистотой до 98% м. б. получены полибутадиены, содержащие только 1/ис-1,4-, транс-1,4- или 1,2-звенья, причем последний полимер м. б. полностью изотактич. или синднотактическим (подробнее см. Стереорегулярные полимеры). [c.465]

    Если геом. параметры кристаллич. решетки мономера находятся в определенном соответствии с параметрами образующихся макромолекул, кристаллич. решетка может непосредственно влиять на ориентацию и строение растущих полимерных цепей. Образующиеся при этом макромолекулы обычно ориентированы вдоль определенной оси исходного кристалла в направлении, по к-рому взаимное расположение мономеров оптимально для образования хим. связей между ними (топотактич. процесс). Так происходит Т. п. нек-рых циклич. мономеров с раскрытием цикла, напр, триоксана, у-прониолактона, а также 2,5-дистирилпиразина, бис-(и-толуолсульфонат)-2,4-гександиола, [c.504]

    Здесь уместно вернуться к затронутому выше вопросу о классификации полимеров по гибкости их цепей. Примем за меру гибкости (или жесткости) полимерной цепи ее персистентную длину. В гл. I мы дадим строгое определение этой характеристики, а пока только укажем, что она равна значению контурной длины макромолекулы, на которой теряется корреляция во взаимной ориентации ее крайних звеньев. Если персистентная длина составляет не более нескольких нанометров, полимер относят к гибкоцепным, если несколько десятков нанометров — к жесткоцепным, полимеры с промежуточной персистентной длиной (ж 10 мкм) иногда называют полужесткими. Такая классификация полимеров конечно является лишь приблизительной. [c.21]


Смотреть страницы где упоминается термин Полимерные цепи, ориентация: [c.49]    [c.71]    [c.72]    [c.404]    [c.404]    [c.108]    [c.359]    [c.404]    [c.277]    [c.222]   
Лакокрасочные покрытия (1968) -- [ c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте