Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны для испарения набухание

    Раствор, приготовленный из ацетата целлюлозы, растворителя (ацетона и воды) и агента набухания (перхлората магния, иногда формамида) в соотношении 22,2 66,7 10,0 и 1,1% (масс.), поливается тонким слоем на стеклянную пластину, подсушивается в течение нескольких минут и затем погружается в холодную воду при температуре около О °С, где выдерживается в течение 1 ч до отделения пленки от подложки. За это время происходит практически полное формование мембраны. В начальной стадии формования ацетон быстро испаряется с поверхности отлитой пленки и на ней образуется гелеобразный слой, препятствующий испарению растворителя с более глубоких слоев раствора полимера Таким образом, в момент погружения в воду, являющуюся осадителем для данного раствора, система представляет собой желированную оболочку, внутри которой находится раствор. В момент соприкосновения с водой гель затвердевает, сохраняя очень тонкую структуру пор поверхностного слоя. Раствор полимера, находящийся внутри оболочки, коагулирует медленнее, так как диффузия воды сквозь поверхностный слой затруднена. При этом водой вымывается как растворитель, так и порообразователь. [c.48]


    Если величина С (или р) меняется от опыта к опыту, это указывает на дефект мембраны или осмометра. В этом случае следует испытать осмометр на герметичность, а растворитель — на наличие загрязнений. При работе с мембранами очень низкой проницаемости может создаться впечатление о непостоянстве величины проницаемости в результате того, что скорость испарения из капилляров имеет тот же порядок, что и скорость прохождения растворителя через мембрану. Величина проницаемости может быть непостоянной, если происходит набухание мембраны, или, например, отнятие воды растворителем у мембран из гидратцеллюлозы или поливинилового спирта, или в случае, если мембрана прогибается. [c.200]

    Влияние набухания на структуру исследовалось нами сопоставлением порограммы, измеренной в рабочей жидкости, в которой происходит набухание, например в воде, с порограммой, измеренной в инертной жидкости, в которой набухание отсутствует. На рис. 5 для ионообменной мембраны МА-100 приведены порограммы, одна из которых измерена испарением инертной жидкости (декана), а другая — воды. Видно, что набухание в воде ионита приводит к многократному увеличению объема пор за счет образования более мелких пор (в основном порядка единиц нанометров), чем те, которые были в сухом ионите. Это важно, так как с уменьшением размера пор возрастает селективность ионитов. В отличие от ионитов в сепараторах из хризотилового асбеста набухание в воде приводит к образованию более крупных новых пор [1]. Из рис. 5 видно также, что МЭП в отличие от МРП позволяет исследовать структуру объектов в их рабочих условиях, т. е. при рабочих давлениях, контакте с рабочей жидкостью и т. п. [c.249]

    Распределение воды по толщине мембраны. Определение профиля распределения концентрации воды по толщине проводилось с помощью многослойных мембран [96, 103]. Мембрану складывали из трех намоченных в воде слоев целлофана таким образом, чтобы между слоями не попали пузырьки воздуха. Затем из нее отжимали избыточную воду и помещали в ячейку установки. После работы в течение заданного времени воду из ячейки сливали через сифон, мембрану вынимали, осушали фильтровальной бумагой ее поверхность, расслаивали, из каждого слоя вырезали образец и помещали в бюкс с притертой крышкой. Затем весовым методом определяли содержание воды в образце. Поскольку мембрана зажималась в ячейке установки тремя быстросъемными струбцинами, между моментом выключения установки и закупоркой в бюкс последнего образца проходило не более одной минуты. Это время замеряли секундомером, а затем по кривой кинетики десорбции воды (рис. 11-48) находили поправку на испарение жидкости из образца за это время. Полученная таким образом степень набухания выражала концентрацию воды в мембране. Результаты измерений показали, что по толщине существует градиент концентрации воды (рис. П-49, а), который может сильно изменяться во времени (рис. П-49, б), не оказывая при этом влияния на скорость проницания мембраны. [c.184]


    Именно сжатием структуры мембраны и выдавливанием из нее части воды, происходящим под действием отрицательного давления, объясняется появление градиента концентрации, показанного на рис. П-49. При малой кривизне менисков (давление пара под мембраной близко к давлению насыщения) градиент отрицательного давления, а следовательно, и концентрации мал, а при большой кривизне — градиенты велики. С течением времени градиент концентрации сильно меняется, однако это совершенно не сказывается на скорости испарения, которая практически остается постоянной. Ясно, что такой градиент не может служить движущей силой процесса проницания, т. е. уменьшение концентрации по толщине мем- браны не обязательно свидетельствует о диффузионном характере проницания. О том же говорит существование минимума на кривых (см. рис. П-49, б). Его можно просто объяснить, основываясь на предложенном механизме проницания. Вода быстро проницает от одной поверхности к другой по крупным капиллярам, занимающим очень малую часть площади мембраны. Набухание же остальной ее Части является медленным процессом и идет с двух сторон мембраны, так как они обе покрыты водой, по направлению к ее средним слоям. [c.186]

    Механизмом переноса веществ через неаористые полимерные мембраны в процессах испарения через мембрану так же, как и в процессах газоразделения, является сорбционно-диффузионный механизм. Перенос через мембрану осуществляется в три стадии растворение проникающих через мембрану веществ со стороны жидкости в полимерном материале диффузия этих веществ через мембрану их испарение с другой стороны мембраны. Селективность процесса определяется селективной сорбцией и (или) селективной диффузией. В отличие от газоразделения сильное сродство компонентов жидкой смеси к полимерному материалу мембраны вызывает повыщенную растворимость жидкости в полимере. В процессе первапорации ироисходит значительное анизотропное набухание материала мембраны. Со стороны паровой фазы мембрана остается практически сухой, а со стороны жидкости устанавливается равновесное состояние и степень набухания велика. Перенос компонентов смеси через неравномерно набухшую мембрану определяется величинами локальных коэффициентов диффузии компонентов, зависящими от их концентраций. В результате профиль концентрации каждого из компонентов в направлении, перпендикулярном к поверхности мембраны, оказывается существенно нелинейным. Тогда и коэффициент проницаемости не будет постоянной величиной, а будет существенно зависеть от состава смеси. Например [4], если для разделения системы этанол—вода в качестве полимера использовать поливиниловый спирт, то при низких концентрациях спирта мембрана сильно набухает и селективность равна нулю. При низких концентрациях воды поливиниловый спирт имеет высокую селективность по отношению к воде и достаточно большую проницаемость. [c.431]

    Мембраны, применяемые для процесса первапорации, представляют собой асимметричные или композиционные мембраны. Как и в случае мембран для газоразделения, пористая под)южка должна иметь открытую пористую структуру для уменьшения сопротивления переносу пара и предотвращения капиллярной конденсации. Существенное требование, предъявляемое к пер-вапорационным мембранам, — это устойчивость материалов мембраны к компонентам разделяемой смеси при повышенных температурах. Сравнительно высокие температуры жидкой смеси необходимы для поддержания достаточно большой движущей силы процесса испарения через мембрану, которой является разность парциальных давлений паров компонентов разделяемой смеси по разные стороны от мембраны. Выбор полимерного материала в значительной мере зависит от того, для решения какой задачи предназначена мембрана. В отличие от газоразделения, при испарении через мембрану эластомеры в результате сильного набухания могут обладать не большими проницаемостями, чем стеклообразные полимеры. К полимеру предъявляются два противоречивых требования. С одной стороны, мембрана не должна набухать слишком сильно во избежание существенного уменьшения селективности. С другой стороны, при низкой растворимости выделяемого компонента в полимере и недостаточном набухании слишком низким оказывается поток вещества через мембрану. Полимеры, имеющие аморфную структуру (стеклообразные полимеры или каучуки), могут оказаться [c.432]


Смотреть страницы где упоминается термин Мембраны для испарения набухание: [c.24]    [c.24]    [c.191]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.29 , c.154 , c.172 , c.184 , c.185 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание

Набухание мембран



© 2024 chem21.info Реклама на сайте