Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос вещества, механизм

    Механизм процесса переноса массы сводится к молекулярной и турбулентной диффузии. При молекулярной диффузии, происходящей в неподвижной фазе и ламинарном потоке, перенос массы характеризуется коэффициентом диффузии ), который рассчитывают по формулам (631)—для газов и (633)—для жидкости. При турбулентной диффузии перенос вещества осуществляется движущимися частицами среды и определяется гидродинамическим состоянием потока. Механизм переноса вещества через поверхность раздела фаз является кардинальным вопросом теории массопередачи и окончательно не решен. Предполагая, что диффузионные сопротивления в жидкой и газообразной фазах обладают свойством аддитивности, можно записать основное уравнение массопередачи  [c.336]


    Диффузионный перенос вещества из одной фазы в другую происходит через поверхность раздела, образующуюся в месте соприкосновения обеих фаз. Считается, что по ту и другую стороны поверхности раздела образуются тонкие пограничные диффузионные слои, в которых наблюдается резкое изменение концентрации. Движение жидкости внутри пограничного слоя носит ламинарный характер, причем скорость движения возрастает линейно с увеличением расстояния от поверхности раздела. В массе газа или жидкости движение носит турбулентный характер. Здесь преобладает более быстрый процесс конвективной диффузии, что приводит к выравниванию концентраций в направлении, поперечном к иоверхности раздела фаз. Таким образом, в разных зонах той или другой фазы действуют различные механизмы переноса в зависимости от гидродинамических условий.  [c.262]

    По механизму переноса вещества внутри смесителей непрерывного действия их можно разделить на смесители прямоточные, смесители диффузионного смешивания и смесители объемного смешивания. [c.249]

    МЕХАНИЗМ ПЕРЕНОСА ВЕЩЕСТВА И ЗАКОНЫ ДИФФУЗИИ [c.192]

    В насадочной колонне происходит типичный противоточный дифференциальный процесс — потоки флегмы и паров находятся в постоянном взаимодействии на поверхности насадки, перенос вещества между фазами идет непрерывно. Механизм работы насадочной колонны не состоит из отдельных самостоятельных ступеней, а представляет собой непрерывное изменение концентраций жидких и паровых потоков вдоль всей поверхности контакта фаз. Именно этой непрерывностью изменения составов [c.121]

    Прохождение электрического тока через проводники первого рода не сопровождается переносом вещества в виде ионов. Примером могут служить металлы и полупроводники. Растворы электролитов являются проводниками второго рода. Прохождение через них электрического тока вызывает передвижение вещества в виде ионов и его химические превращения. Ток к проводникам второго рода подводится через проводники первого рода. При прохождении постоянного тока в местах, где изменяется механизм переноса электричества, ионы электролита разряжаются, а нейтральные атомы приобретают заряд. Это электродные процессы. Они подчиняются двум законам, сформулированным М. Фарадеем (1834 г.)  [c.180]


    Перенос вещества может осуществляться по нескольким механизмам. [c.147]

    Третий механизм массопереноса — конвекция, т. е. перенос вещества вместе с потоком движущейся жидкости. В естественных условиях конвекция возникает в результате градиента плотности раствора, который, в свою очередь, является следствием концентрационных изменений в поверхностном слое или связан с разогреванием приэлектродного пространства при прохождении электрического тока. Естественная конвекция может быть вызвана также выделением газообразных продуктов электродных реакций. Искусственную конвекцию создают перемешиванием электролита или вращением самого электрода. Конвекция не может устранить диффузию, так как по мере приближения к электроду скорость движения жидкости относительно его поверхности падает, а градиент концентрации возрастает. Поэтому чем ближе к поверхности, тем большую роль в процессе массопереноса играет диффузионный механизм. [c.172]

    В-третьих, в реакторах для проведения гетерогенных и гетеро-генно-каталитических процессов имеет место различный характер границы раздела фаз, тип массопередачи и, следовательно, ее механизм, хотя во всех случаях химической реакции предшествует перенос вещества через границу раздела фаз. [c.12]

    Перенос вещества в движущейся жидкости обусловлен двумя разными механизмами  [c.208]

    В кнудсеновской области величина а падает с уменьшением размера пор. При определенных условиях в мелких порах проявляется, однако, дополнительный механизм переноса вещества за счет поверхностной диффузии молекул, адсорбированных на стенках пор. Этот эффект, в принципе, может приводить к величинам а, превышающим единицу. [c.101]

    Основной вопрос теории массопередачи заключается в том, что происходит на межфазной поверхности. При этом необходимо выявить впд механизма переноса вещества через межфазную поверхность — молекулярный (молекулярная диффузия) или турбулентный (вихревая диффузия . [c.236]

    При расчете массообменных процессов неравномерность распределения элементов потока на тарелках обычно учитывается по локальным характеристикам ограниченных объемов массообменного пространства, в пределах которых допускается идеализированное представление о механизме переноса вещества. Выделенные таким образом локальные объемы с однородными свойствами описываются типовыми гидродинамическими моделями. От числа, типа элементарных моделей и способа их взаимосвязей зависит точность описания структуры потоков в целом. Рассмотрим отдельные типовые модели структуры движения жидкости по тарелке ректификационной колонны. [c.87]

    Перенос вещества к частице в движущейся несущей фазе обусловлен двумя совершенно различными механизмами. Во-первых, при наличии разности концентраций в несущей фазе возникает молекулярная диффузия во-вторых, частицы вещества, растворенного в несущей фазе, увлекаются последней в процессе ее движения и переносятся вместе с ней. Совокупность обоих процессов именуется конвективной диффузией вещества в несущей фазе. Уравнение конвективной диффузии имеет вид [22] [c.251]

    Водяной пар действует на поверхность, а не на всю массу вещества первичных частиц. Поэтому он не может ускорить термическую диффузию в объеме частиц геля, которая определяется лишь температурой паровой обработки, В то же время при действии пара уменьшение поверхности ускоряется, поскольку облегчается перенос вещества путем поверхностной диффузии или путем испарения вещества геля в одном месте и конденсации его в другом. По поверхностно-диффузионному механизму спекание катализатора происходит следующим образом (рис. 25,6). Вещество меньшей из двух соприкасающихся первичных частиц движется по ее поверхности к месту контакта обеих частиц и переходит на большую первичную частицу. В результате этого меньшая частица в конце концов исчезает, а более крупная частица растет. Крупные термодинамически более стабильные частицы поедают мелкие. В случае движения вещества по поверхности исходное взаимное расположение первичных частиц сохраняется, т. е. упорядочения упаковки геля не происходит. Поэтому внешние геометрические размеры шарика катализатора не изменяются. Удельный объем пор катализатора также должен оставаться постоянным, так как независимо от размера первичных частиц общий объем материала шариков катализатора остается прежним. В результате уменьшения общего числа первичных единиц и увеличения их среднего размера уменьшается поверхность единицы массы мате- [c.55]

    Различие в изменении структуры, как отмечают авторы [125], указывает на разные механизмы этих процессов. При термическом спекании дисперсных тел большую роль играет объемная диффузия. В присутствии водяного пара ускоряется перенос вещества за счет поверхностной диффузии, облегчаемой адсорбцией водяного пара либо за счет испарения вещества геля с водяным паром с поверхности мелких частиц и конденсации его на поверхности более крупных. Наиболее вероятный механизм действия водяного пара состоит в снижении энергетического барьера миграции поверхностных атомов и молекул. Роль объемной диффузии при температуре паровой обработки невелика, так как при 750 °С термическое спекание протекает крайне медленно [126]. [c.54]


    Изучение и оценка переноса тепла в реакционном объеме представляют большие трудности. Особенно это относится к реакторам с насадкой, так как тепл оперен ос в них осуществляется не только через массу реагирующего газа или жидкости, но и непосредственно через твердую фазу. В ряде случаев в тепловом балансе необходимо учитывать также и лучеиспускание. Поэтому, чтобы различные механизмы переноса тепла можно было однозначно характеризовать, вся масса реакционного объема в соответствии с диффузионной моделью рассматривается как некоторая однородная (гомогенная) среда, в которой перенос тепла происходит с некоторым эффективным коэффициентом температуропроводности Отэ По тем же причинам, что и для коэффициента переноса вещества (неизотропность реакционной среды, упрощение расчетов), вместо 0 будем рассматривать его продольную и поперечную составляющие ат и атг. При этом вначале определяются коэффициенты теплопроводности и Хг, ккал1м ч град. Величина коэффициента температуропроводности определяется из соотношения [c.67]

    Структура пористого тела в значительной степени может вли ять на кинетику адсорбции. Прн адсорбции на пористых телах появляется стадия переноса вещества внутри пор, для которой характерен, главным образом, диффузионный механизм. Часто эта стадия определяет время установления адсорбционного равнове- сия. [c.145]

    Равновесное распределение концентрации, как и любое другое равновесное состояние, не зависит от пути его достижения. Примененный выше способ расчета этого распределения (путем приравнивания диффузионного и седиментационного потоков) — это только один из возможных способов. Более того, наличие переноса вещества в этом случае не является необходимым условием, так как в полученных нами уравнениях величина В, характеризующая перенос и связанное с ним трение, отсутствует. Равновесное распределение можно определить, не рассматривая механизма его установления. Механизм определяет только время достижения равновесия или, точнее, время, за которое устанавливается распределение, близкое к равновесному (время достижения истинного равновесия всегда бесконечно велико). [c.62]

    Наконец, в явлениях массопереноса необходимо учитывать конвекцию, т. е. перенос вещества вместе с потоком движущейся жидкости. Этот механизм переноса можно создать искусственно, применяя размешивание, но он может возникнуть и в естественных условиях, так как изменение концентрации приводит к изменению плотности раствора и возникновению потоков жидкости. Изменение плотности происходит также тогда, когда протекание реакции сопровождается выделением тепла и разогреванием приэлектродного слоя. При образовании газообразных продуктов размешивание раствора вызывают пузырьки газа, отрывающиеся от поверхности электрода. Конвекция не может устранить диффузию, так как, согласно законам гидродинамики, при приближении к поверхности электрода скорость движения жидкости падает и, с другой стороны, одновременно возрастает градиент концентрации. Поэтому всевозрастающую роль начинает играть перенос вещества диффузией. [c.148]

    В последние 20—30 лет разработано множество моделей механизма переноса вещества из одной фазы в другую. Но ни одна из имеющихся моделей не описывает процесса пoJ нo тью. [c.52]

    В одной из моделей механизм массопередачи упрощенно представляется следующим образом (рис. 9). Предполагается, что с обеих сторон от поверхности соприкосновения фаз в каждой фазе образуются неподвижные или ламинарнс движущиеся диффузионные слои (пленки), отделяющие пов(фхность соприкосновения от ядра потока соответствующей фазы. Ядро фазы — основная масса фазы, где происходит интенсивное перемешивание. Принимается, что вследствие I-нтенсивного перемешивания в ядре фазы концентрация распзеделяемого вещества в нем практически постоянна. Перенос вещества в ядре фазы осуществляется преимущественно за сче-- конвекции, т. е. движущимися частицами гасителя (распределяющей фа- ы) и распределяемого (целевого) вещества. [c.52]

    Артор не совсем точно излагает основные концепции, лежащие в основе модели Кинга, а также выводы в отношении характера зависимости от В а, вытекающие из нее. В основу модели положена возможность одновременного действия двух механизмов переноса вещества от свободной поверхности вглубь жидкости в турбулентном потоке. Один из них соответствует постепенному затуханию коэффициентов турбулентного обмена с приближением к межфазной границе. Этот механизм Кинг считает относящимся к вихрям сравнительно небольшого масштаба. Другой механизм связан с обновлением поверхности сравнительно крупными вихрями (их размер должен быть больше толщины слоя, в котором происходит затухание по первому механизму и где соответственно происходит основное изменение концентрации). Таким образом, модель Кинга, по существу, включает представления теорий пограничного диффузионного слоя (см. выше) и обновления поверхности (см. ниже). Что касается возможного характера зависимости от О а, то на основании собственных экспериментальных данных, полученных в ячейке с мешалкой и в насадочной колонне и анализа результатов, полученных другими исследователями, Кинг приходит к выводу о более узком интервале практически возможного изменения показателя степени при Оа от 0,5 до 0,75. Прим. пер. [c.102]

    В гл. 11 рассматривался механизм лшссонереиоса через сферическую поверхность раздела фаз. Отличительной чертой распылительных и барботажных колопи является наличие стесненного потока дисперсной фазы, когда перенос вещества или энергии осуществляется между сплошной фазой и нолидисиерсной системой капель или пузырей. [c.246]

    Весьма примечательно, что наилучшего понимания каталитических реакций удалось добиться в тех случаях, когда промежуточные стадии или соединения были идентифицированы химическими методами такова, например, большая область реакций карбониевого типа, протекающих на кислотных катализаторах, а также гомогенные реакции, катализируемые комплексами, число которых непрерывно возрастает. Механизм гомогенных реакций можно экстраполировать на гетерогенные реакции, и успехи, достигнутые в области химии неорганических комплексов и в теории кристаллического поля, создали теоретические предпосылки, доказывающие правильность такой экстраполяции. И все же такой чисто химический подход неудовлетворителен, в особенности в области гетерогенного катализа, в котором физические явления (обусловленные влиянием поверхности) иногда накладываются на химическое явление (эффекты, связанные с переносом вещества или [c.7]

    Из соотношения (III, 25) следует, что коэффициент мяссопередачи учитывает молекулярный и вихревой механизмы переноса вещества. [c.198]

    Механизм переноса вещества и тепла при конденсации пара в присутствии некоидеисирующегося газа. При выяснении механизма переноса вещества и тепла при конденсации пара в присутствии неконденсирующегося газа парогазовую смес . будем рассматривать как бинарную, состоящую из активного компонента — кондесирующегося пара и инертного компонента — неконденсирующегося газа. При этом общее давление смеси принимаем постоянным и равным Рсм = п + Рг. По нормали п) к поверхности охлаждения имеет место перенос пара из ядра парогазового потока через пограничный слой у этой поверхности. В пограничном слое существует градиент парциального давления пара дРи1дп. [c.149]

    Модели переноса вещества. Интенсивные исследования процесса псевдоожижения, проводившиеся в последнее десятилетие, значительно прояснили сущность основных явлений, имеющих место в слое, позволили вскрыть механизм переноса тепла и вещества и удовлетворительно их описать, однако не привели еще к созданию достаточно общей и пшрокой математической модели, которая моглд бы лечь в основу проектирования реакторов. [c.45]

    По механизму процесса в целом, включая собственно каталитическую реакцию и. диффузионные стадии переноса вещества, различают процессы, проходяи ие в кинетической, внешнедиффузионной и внутридиффузионной областях. [c.29]

    А. Введение. Под диффузией будем понимать перенос вещества в пределах одной фазы, обусловленный только молекулярными механизмами этот перенос не связан ни с внешними силами, ни с турбулентностью. Диффузия может быть вызвана градиентами ряда величин, но здесь будет рассматриваться только диффузия, обусловленная градиентом концентрации. В бинарной смеси при диффузии компонента А из одной точки в другую с некоторой скоростью для сохранения потока компонент В должен диффундировать с той же скоростью, по в противоположном направлении. Если Рщ — гюток, то коэффициент диффузии [c.179]

    При моно- или полидисперсной структуре катализатора, когда наряду с переносом вещества по механизму Кнудсена протекает и объемная диффузия, значение должно находиться ) эжду значениями 4 граничных же случаях, когда превалирует один из механизмов диффузии, значение соизмеримо со значениями Д или [c.68]

    Получена зависимость эффективности использования внутренней поверхности катализатора от температуры для реакций гидрогенолиза этана и пропана при давлении I ата (см. рис. 4). Однако промышленные установки очистки ПГ работают под давлением около 2 ата. Положительное влияние давления на протекание реакций гидрогенолиза этана и пропана объясняется увеличением степени использования внутренней поверхности никель-хромового катализатора. Дело в том, что с ростом давления механизм переноса вещества в порах катализатора изменяется от Кнудсеновской до нормальной диффузии. Поэтому при высоких давлениях, когда практически во всех порах перенос осуществляется по механизму нормальной диффузии, величина /остается практически неизменной и оптимальной является однородная мел-копористая структура катализатора. [c.69]

    Исследование кинетики каталитических процессов - одним из основных методов определения механизма катализа, знание которого необходимо для решения проблем научного и практичесюго плана,Кинетические данные при этом до.таны быть надежными и неискаженными макроскопическими факторами. К последним относят физические этапы переноса вещества.и тепла, затруднения в осуществлении которых приводят к концентрационным и температурным неоднородностям в реакционном объеме и внутри кусков пористого катализатора и тем самым оказывает искажающее влияние на кинетику процессов /17 К одному из видов макрофакторов В.А.Ройтер отнес такхе химические неоднородности в ишхте и по глубине зерен контакта, которые могут возникать вследствие химического взаимодействия катализатора с реакционной средой /2-А7 и неучет которых, также как и первых двух типов искажений, обесценивает результаты исследований как в теоретическом, так и в практическом отношениях. Большое внимание этому важному для катализа принцицу о воздейотвии реакционной системы на катализатор уделяет в своих работах Г.К.Боресков /Ь- . [c.90]

    Повышенная электрическая проводимость органических полупроводников объясняется высокой подвижностью я-электро-нов сопряженных двойных связей. Это обусловливает эстафетную электронно-дырочную проводимость при состоянии, когда электроны находятся в них на более высоких энергетических уровнях. В результате взаимодействия с поверхностью, ограничивающей объем, электрон мол<ет оторваться от молекулы л попасть на поверхность. При этом в молекуле возникает вакансия— дырка. Эффективная масса электронов и дырок много меньше массы молекулы, так что у соседней молекулы, которая не успевает заметно сместиться, один из электронов. может перескочить в образовавшуюся дырку. Одновременно мигрируют как положительные, так и отрицательные заряды. Электрическая проводимость по эстафетному механизму возникает за счет электронных донорно-акцеиторных взаимодействий между молекулами и на границе масляной фазы с поверхностью металла. В отличие от ионной или форетической проводимости при эстафетной электрической проводимости не происходит переноса вещества, а значит, последняя не долл<на зависеть от вязкости среды. [c.61]

    Последующие главы посвящены процессам, принципиально зависящим от масштаба аппарата и определяемым гравитационными колебаниями слоя в целом с характерными частотами порядка VglH. Анализируются все прямые и косвенные данные, подтверждающие этот механизм и обосновывающие вытекающие отсюда закономерности. Сюда относятся все явления переноса вещества, теплоты и импульса в кипящем слое и взаимодействия частиц с пронизывающим слой потоком газа или жидкости. Основное внимание при этом обращено на системы, псевдоожижаемые газом. [c.6]


Смотреть страницы где упоминается термин Перенос вещества, механизм: [c.212]    [c.223]    [c.26]    [c.262]    [c.238]    [c.234]   
Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 (1976) -- [ c.139 ]




ПОИСК







© 2025 chem21.info Реклама на сайте