Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение через мембрану растворителя

    Диффузионные мембраны обычно применяют для разделения газов, жидких смесей методами испарения через мембрану, диализа. Диффузионные мембраны являются практически непористыми. Они представляют собой квазигомогенные гели, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия). [c.315]


    Суть этого процесса заключается в следующем. Нагретый до сравнительно невысоких температур (порядка 30-70 °С) исходный раствор (горячий) подается с одной стороны гидрофобной микропористой мембраны. Вдоль другой стороны мембраны движется менее нагретый (холодный) растворитель (обычно вода). Поскольку мембрана гидрофобна, а размеры пор ее достаточно малы (порядка одного микрометра и менее), то жидкая фаза в поры мембраны не проникает. Испаряющийся с поверхности горячего раствора пар (поверхностью испарения в этом случае являются образующиеся на входе в поры мениски раствора) проникает в поры мембраны, диффундирует через слой воздуха в поре и конденсируется на поверхности менисков холодной жидкости. При этом в порах создается разрежение, что ускоряет процесс испарения и, следовательно, повышает его эффективность. Так как температура исходного раствора невысока, то для проведения процесса мембранной дистилляции можно применять низкопотенциальную тепловую энергию - тепло нагретой после холодильников воды, отходящих газов (например, выхлопных газов двигателей внутреннего сгорания и др.), геотермальных вод и, наконец, солнечную энергию. [c.338]

    Для процессов разделения жидких смесей методом испарения через мембрану используют непористые полимерные мембраны, являющиеся квазигомогенными гелями. Растворитель и растворенные вещества проникают через них вследствие молекулярной диффузии, поэтому такие мембраны называют диффузионными. Скорость прохождения молекул через диффузионную мембрану пропорциональна коэффициенту диффузии, зависящему от размеров молекул и их формы. Диффузионные мембраны применяют для разделения компонентов с близкими [c.431]

    Процесс переноса парообразной пробы из камеры испарения в колонку протекает медленно. Особенно долго в камере испарения удерживаются пары растворителя. Обдув вкладыша способствует удалению оставшихся в испарителе следовых количеств парообразной пробы. На рис. 3-14 приведены данные, свидетельствующие о влияние обдува на форму пика растворителя. Если все прочие условия эксперимента оптимальны, то количество пробы, уносимое при продувке, невелико. Объемная скорость обдува мембраны влияет также на количественный перенос растворенных веществ в колонку. Если вкладыш переполнен парами пробы, то часть пробы уносится через линию обдува мембраны. На рис. 3-15 приведены данные, иллюстрирующие влияние объемной скорости обдува мембраны на количественное определение н-ундекана. При малых объемных скоростях обдува и объемах пробы от 1 до 2 мкл обычно не возникает трудностей. [c.41]


    Непрерывное формование трубчатой полупроницаемой мембраны можно производить литьем формовочного раствора в осадительную ванну (рис. 111-20). Формовочный раствор выдавливается из кольцевой фильеры 1, наружный срез которой погружен в осаждающую жидкость. Газ (воздух) в камеру подсушки 2 подается по трубке (шаблону) 4. Уровень осаждающей жидкости (воды) в камере подсушки регулируется давлением подаваемого газа, который затем вместе с парами растворителя и частью осаждающей жидкости удаляется по трубке 5, проходящей через центр фильеры. Полученная трубчатая мембрана 3 обрезается на необходимую длину и может быть установлена в каналах пористого каркаса или соединена в блок. Управление процессом образования селективного слоя при этом способе формования достаточно сложное, так как регулирование времени подсушки производится изменением давления газа, что одновременно изменяет и скорость испарения растворителя, а также может привести к деформации трубчатой мембраны. Промышленное применение этого способа, видимо, возможно только при изготовлении капиллярных трубчатых мембран (до 3— 5 мм), используемых без каркаса при небольших давлениях. [c.129]

    При диффузионно-мембранном процессе испарения через мембрану отводятся пары растворителя, которые затем конденсируются в отдельном конденсаторе. Процесс переноса паров растворителя поперек мембраны описывается законом диффузии Фика (уравнение (5.5)), в котором коэффициент диффузии имеет смысл коэффициента эквивалентного квазидиффузионного переноса целевого компонента в пористой структуре мембраны и определяется опытным путем для каждой конкретной пары компонент - мембрана. [c.468]

    Как отмечает Лонг [44], главная трудность при создании удовлетворительной теоретической модели для разделения смесей испарением через мембрану заключается в том, что структура полимерных мембран обычно меняется от партии к партии, зависит от температурных условий и предыстории работы мембраны в растворителе. Кроме того, характеристики полимерной мембраны могут меняться [c.150]

    Если величина С (или р) меняется от опыта к опыту, это указывает на дефект мембраны или осмометра. В этом случае следует испытать осмометр на герметичность, а растворитель — на наличие загрязнений. При работе с мембранами очень низкой проницаемости может создаться впечатление о непостоянстве величины проницаемости в результате того, что скорость испарения из капилляров имеет тот же порядок, что и скорость прохождения растворителя через мембрану. Величина проницаемости может быть непостоянной, если происходит набухание мембраны, или, например, отнятие воды растворителем у мембран из гидратцеллюлозы или поливинилового спирта, или в случае, если мембрана прогибается. [c.200]

    Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]

    Испарение через мембрану осуществляется с помощью непористых полимерных мембран. Исходная жидкая смесь, подлежащая разделению, приводится в контакт с одной стороной селективно проницаемой мембраны, проникшие через мембрану вещества в виде пара удаляются с другой стороны мембраны. Низкие значения парциальных давлений проникающих через мембрану компонентов обеспечиваются путем создания вакуума со стороны паровой фазы или с помощью газа-носителя (см. раздел 18). В отличие от большинства других мембранных процессов, для проведения которых не требуется подвода тепла, процесс испарения через мембрану требует испарения части исходной жидкой смеси. Поэтому данный метод разделения целесообразно использовать для выделения из жидких смесей компонентов, содержащихся в небольших количествах. Разделение смеси достигается за счет того, что различные компоненты смеси переносятся через мембрану с различной скоростью. С помощью испарения через мембрану могут эффективно разделяться азеотропные жидкие смеси, проявляющие положительные отклонения от закона Рауля, разделение которых при помощи обычного процесса ректификации невозможно. В настоящее время испарение через мембрану используется главным образом для дегидратации, т. е. удаления воды из органических растворителей или их смсссй. [c.32]


    Особый случай обычной газовой проницаемости за счет диффузии представляет собой процесс, известный как испарение через мембрану (жидкостная проницаемость), в котором мембрана отделяет исходный раствор в жидком состоянии от потока пермеата в газообразном состоянии. На стороне мембраны, контактирующей с паром, поддерживается низкое давление, что препятствует проникновению жидкости. Несмотря на то что отмечается сильная зависимость скорости диффузии от концентрации растворителя в полимерной пленке, по-видимому, не будет наблюдаться существенного различия между значениями, найденными для случая испарения через мембрану, и значениями для диффузии паров. Станнетт и Ясуда [31] использовали мембраны, находящиеся в равновесии с пермеатом, и не отметили различий в проницаемостях жидкости и пара для растворов бензола и циклогексана через полиэтилен, а также ацетона и ацетонитрила — через резину. Таким образом, даже в том случае, когда скорости проницаемостей паров и жидко- [c.36]

    Природа взаимодействия между исходным раствором и материалом мембраны будет оказывать значительное влияние как на равновесную концентрацию разделяемых веществ в мембранной фазе, так и на скорость транспорта компонентов смеси через мембрану. Необходимо отметить, что выбор полимера для процесса испарения связан с большими ограничениями. Перванорационные мембраны должны обладать не только высокими показателями селективности, производительности и механической прочности, но и выдерживать прямой контакт с органическими растворителями при новышенной температуре. Со стороны пермеата мембрана бывает почти сухой, по крайней мере, при работе по вакуумной схеме, поэтому набухает неравномерно, что влечет за собой дополнительную нагрузку на мембрану. Оптимально удовлетворяют этим требованиям композитные мембраны, в которых механическую, термическую и химическую стойкость обеспечивает практически инертная по отношению к пермеату пористая подложка, а характеристики массопереноса и селективности определяются тонким активным слоем. [c.218]

    К основным мембранным методам разделения относятся обратный осмос, ультрафильтрация, испарение чзрез мембрану, диализ, электродиализ, диффузионное разделение газов. Обратный осмос. Метод обратного осмоса состоит в фильтровании растворов под давлением через полупроницаемые мембраны, пропускающие растворитель и полностью (или частично) задерживающие молекулы (или ионы) растворенных веществ, [c.428]

    Имеется большое число наиболее общих источников ошибок [115]. Среди них асимметрия мембраны, адсорбция полимера на мембране, захват или образование пузырьков, испарение растворителя, поглощение атмосферной влаги, влияние температуры (вследствие неравномерного термостатирования), просачивание, присутствие низкомолекулярных примесей, нестабильность мембраны, диффузия полимера низкого молекулярного веса и т. д. Большинство указанных неприятностей можно избежать или преодолеть путем соответствующего подбора мембраны, улучшения конструкции осмометра или тщательно контролируя условия эксперимента. Но остается неразрешенным вопрос о предотвраще1П№ диффузии полимера через мембрану. [c.403]

    Технология розлива, размазывания и экструзии полимерных растворов и расплавов является хорошо известным способом получения пленок и волокон различного назначения. Все технологические особенности и отличия связаны с необходимостью получения пленок и волокон с конечной селективностью и большой скоростью проникания растворителя через них. Внутри этих способов изготовления полупроницаемых мембран различаются три метода их формования сухой, мокрый и сухомокрый. Сухое формование мембран заключается в испарении в воздух или специально подобранную атмосферу растворителя в результате получают плотные гомогенные мембраны. Гетерогенные мембраны, обладающие плотным слоем, расположенным на рыхлом пористом слое, получаются при сухомокром формовании. При этом методе изготовления мембран сперва происходит испарение части растворителя из тонкого слоя раствора в атмосферу (предформование), а за- [c.15]

    МДК-эффект создает также осмос путем вытягивания молекулами растворенных веществ тонких канатиков растворителя через микроноры органических мембран. А органические мембраны потому и легко создаются, что белковые молекулы имеют крупные размеры и при соединении их в виде биологических тканей всегда остаются дырки в виде микронор, которые и поддерживают перемещение веществ сквозь эти микропоры. А осмос — это регулятор поддержания определенного уровня водонасыщенностн в растениях и живых организмах. Как только они сильно слишком испаряют влагу, этим повышая концентрацию солей в биологической клетке, так сразу же осмос с силой притягивает воду в клетки через поры мембран. Испарение воды происходит путем перевода ее в газообразное состояние, когда осмос не действует, а нривнос воды осуществляет уже осмос. [c.285]


Смотреть страницы где упоминается термин Испарение через мембрану растворителя: [c.97]    [c.71]    [c.209]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Испарение через мембрану



© 2025 chem21.info Реклама на сайте