Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура раздела Объекты и методы исследования

    Все методы исследования с помощью просвечивающего электронного микроскопа разделяют на прямые и косвенные. При прямых методах в микроскопе исследуют непосредственно объект в виде очень тонкой пленки (среза) или мельчайших частиц (определение формы и размера частиц высокодисперсных систем, изучение структуры биологических объектов, полимеров, металлов и т. п.). При косвенных методах в микроскопе рассматривают не сам объект, а отпечаток этого объекта. Отпечаток иначе называют слепком или репликой. Метод реплик применяют для исследования рельефа различных поверхностей, а также таких объектов, как кристаллы льда или гели, которые невозможно исследовать непосредственно в микроскопе. Существенным недостатком электронной микроскопии является невозможность наблюдения образца в динамических условиях, т. е. в движении, так как препарат должен быть высушен или заменен репликой. [c.395]


    Для систематического изучения состава и строения органического вещества твердых топлив вначале использовались главным образом методы органической химии, отчасти коллоидной химии, с привлечением данных, полученных геологией и микробиологией. Химия и физика высокомолекулярных соединений и угольная петрография в этот период только начинали оформляться в качестве самостоятельных разделов науки. Еще недостаточно были развиты физико-химические и чисто физические методы исследования. В этот период объектом исследования преимущественно являлись торфы, бурые угли, горючие сланцы, сапропелиты, растения-угле-образователи и продукты полукоксования этого твердого топлива. Каменные угли из-за большого разнообразия и очень сложной структуры были изучены слабее. [c.5]

    В данном разделе излагается метод нахождения приближенных значений характеристик связности сетей. Метод позволяет анализировать произвольные структуры с произвольными показателями надежности объектов и каналов связи, однако он наиболее эффективен при исследовании высоконадежных сетей большой размерности. Для таких сетей реализация метода на ЭВМ позволяет добиться степенной зависимости (порядка п ) трудоемкости от числа п элементов сети. При этом точность метода лежит в диапазоне где к — порядок оценки  [c.505]

    Следует отметить, что многие белки сохраняют в монослоях свои ферментативные свойства и могут вступать в специфические реакции. Поэтому описываемые коллоидно-химические методы исследования пленок бел ков в совокупности с другими ценны для изучения различных свойств белков, они открывают путь к раскрытию механизма процессов обмена на границах раздела клеток и внутриклеточных структур в биологических объектах. Именно на таких границах происходит (в силу поверхностной активности) концентрирование биологически и физиологически активных веществ, проявляющих здесь свои важные специфические свойства (например, ферментативную активность). [c.66]

    Поскольку вклад поверхностного слоя в свойства материала, как правило, невелик в сравнении с вкладом объема, экспериментальное исследование свойств и структуры поверхностных слоев сильно затруднено большинство методов характеризует сумму свойств поверхностного слоя и объема. Поэтому большая часть выводов относительно вклада поверхностного слоя делается на основании изменений, вносимых границей раздела в свойства полимера в целом. В этом случае наиболее удобным объектом для исследования свойств граничных слоев являются наполненные полимеры, которые можно рассматривать как систему, состоящую из частиц твердого тела с тонкими полимерными прослойками на поверхности. [c.13]


    Спектр необработанных натуральных и синтетических волокон трудно снять из-за сильного рассеяния ими света. Задача препарирования при исследовании волокон заключается в получении оптически гомогенной и достаточно тонкой заготовки, имеющей ровную поверхность. При этом нужно не допускать изменений структуры, которая сама по себе является объектом исследования. Опубликовано несколько обзорных работ, посвященных методам препарирования волокон [698, 1428, 1599, 1887]. Все методы можно разделить на три группы 1) методы, при которых сохраняется только химическая структура, 2) методы, позволяющие сохранить надмолекулярную структуру, и 3) методы получения ориентированных образцов. [c.68]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]

    Целью этой главы является рассмотрение областей применения пектров ядерного магнитного резонанса (ЯМР) для структурных ш стереохимических исследований природных соединений. Общая теория ЯМР и применяемая аппаратура подробно описываются в обзорах [70, 746, 81, 124] поэтому здесь эти вопросы будут затронуты только в самых общих чертах для того, чтобы ознакомить читателя с используемой терминологией. В соответствующих разделах читатель найдет более детальную теоретическую трактовку ряда специальных проблем. Здесь подробно изложены вопросы, касающиеся самих объектов исследования и анализа спектров, причем особое внимание обращено на эмпирическую корреляцию между данными ЯМР и молекулярной структурой, поскольку для химика-органика, работающего в области исследования природных соединений, метод ЯМР представляет собой по существу еще один спектроскопический метод, с помощью которого можно получить информацию о числе и пространственном расположении атомов некоторых элементов в сложных молекулах. [c.204]

    При определенных условиях растянутые и кристаллизующиеся ориентированные образцы полимеров дают электронограммы, состоящие из дискретных пятен и аналогичные электронограммам монокристаллов. На рис. 150 в связи с рассмотрением методов расчета текстур диаграмм была показана электронограмма растянутого полимера. Дифракционные картины растянутых полимеров весьма близки к волокнистым диаграммам блочных полимеров, получаемых при рассеянии рентгеновских лучей, и, вообще говоря, не дают никаких новых сведений об их структуре. Однако, как и во многих других случаях, преимущества методов электронной дифракции определяются возможностью комбинирования чисто дифракционных исследований с электронно-микроскопическими наблюдениями исследуемого объекта. На рис. 156а показан электронно-микроскопический снимок растянутой тонкой пленки полиэтилена толщиной всего лишь 100 Л (нерастянутая пленка полиэтилена состоит из сферолитов). Микродифракционная картина, полученная с этой области (рис. 1566), свидетельствует о том, что полимерные цепи ориентированы преимущественно параллельно осям фибрилл [37 ]. Однако следует отметить, что такая ориентация макромолекул осуществляется не во всех фибриллярных структурах, встречающихся в кристаллических полимерах (см. раздел Г-3). [c.249]


    Как видно из материала предыдущего раздела, задача установления первичной структуры нуклеиновых кислот является весьма сложной и разрешена пока лишь в некоторых простейших случаях. В связи с этим большое значение для исследований связи структуры и реакционной способности, а также биологической активности приобретают модельные олиго- и полинуклеотиды определенного строения. Некоторые полинуклеотиды такого типа (см. стр. 64) получены из природных объектов, однако систематическое использование модельных полинуклеотидов для решения физико-химических и биологических проблем стало возможным только после разработки методов препаративного получения подобных соединений с помощью химического или ферментативного синтеза. Химические методы синтеза имеют значение для получения олигонуклеотидных соединений для получения же полинуклеотидов применяются ферментативные и химико-ферментативные методы. [c.83]

    Материал данной книги можно условно разделить на две части. В первой из них (глава I) описаны гидроокиси 26 металлов, в том числе 14 лантаноидов. Выбор металлов сделан с учетом синтеза важных неорганических материалов — сорбентов, катализаторов и особенно ферритов. При рассмотрении условий осаждения (реакций образования) гидроокисей из растворов наиболее часто используемых солей (нитраты, хлориды и сульфаты) и осадителей (едкий натр и аммиак) большое внимание уделено описанию побочных процессов — образованию основных солей (при недостатке осадителя) и гидроксокомплексов (при его избытке). Подробно охарактеризована кристаллическая структура модификаций гидроокисей и оксигидроокисей по самым достоверным рентгенографическим исследованиям. Приведены данные о термической устойчивости (температура дегидратации) и природе получающихся при этом продуктов — окислов. Широко освещены результаты дифференциально-термического и термогравиметрического анализа — незаменимых методов при исследовании данных объектов. [c.3]

    Из предлагаемых лекций читатель узнает, какие методы могут наиболее эффективно использоваться для определения столь важных свойств твердых гетерогенных катализаторов, как их химический и фазовый состав в объеме и на поверхности, текстурные характеристики. Особый интерес могут представлять разделы, демонстрирующие специфику каждого из методов, благодаря которой выявляются особенности строения и структуры объекта, не доступные для получения иными средствами. Возможности физико-химических методов проиллюстрированы на конкретном примере исследования монолитного катализатора очистки выхлопных газов автомобильных двигателей. [c.7]

    Исследование объектов большей толщины сопряжено со значительными затруднениями, поэтому структура образцов полимеров, закристаллизованных в блоке, не выяснена окончательно. В этом случае сведения о структуре образца могут быть получены при изучении реплик с его поверхности. Например, Фишером была предпринята попытка объяснить данные, полученные при исследовании сферолитов методами электронной и оптической микроскопии. Однако структура на поверхности, по-видимому, всегда отличается от структуры в блоке. Поэтому можно выдвинуть возражение против попыток представить внутреннее строение массивного образца, исследуя реплики с его поверхности. Однако Пальмер и сотр. предложили остроумный метод, позволяющий все же использовать этот способ. Для этого кристаллизацию образцов проводили в контакте с частично совместимым полимером, обладающим близкой по величине вязкостью расплава, в предположении, что кристаллизация на границе раздела двух полимеров протекает так же, как в блоке. Следовательно, изучение поверхности после разделения двух компонентов должно дать результаты, характерные для блока. [c.64]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Чтобы наиболее полно использовать оптические возможности микроскопа при микроскопическом исследовании таких веществ, необходимо тщательно выбрать подходящий способ освещения и метод наблюдения. Чаще всего приходится комбинировать различные методики. Исследование в проходящем свете применяется в широкой области увеличений от самых малых до самых больших при изучении препаратов веществ, которые по спектру поглощения или по показателю преломления заметно отличаются от склеивающей среды. Вопросы освещения падающим светом рассмотрены в трех разделах точечные лампы, применяемые при общем исследовании слабо увеличиваемых препаратов без склеивающей среды кольцевые опак-иллюхминаторы, которые при работе со слабыми увеличениями позволяют лучше регулировать освещение, а, кроме того, при средних и сильных увеличениях обеспечивают возможность исследования препаратов как без иммерсии, так и с водяной и масляной иммерсией обычные опак-иллюминаторы, применяемые при изучении поверхности непрозрачных (отражающих) объектов. Метод тёмного поля и ультрамикроскопическне методы исследования имеют особое значение при исследовании деталей, структуры и отдельных частиц, размеры которых меньше разрешающей силы микроскопа. Это объясняется тем, что на темном поде можно наблюдать любой объект (независимо от его величины), если вследствие преломления, диффракции или отражения света он сам становится источником света. Микроскопия с использованием фазоконтрастного приспособления представляет собой особое усовершенствование метода наблюдения в проходящем свете, который оказался весьма полезным при изучении объектов с малой разностью показателей преломления. Этот метод увеличивает резкость изображения, не уменьшая при этом разрешающей силы. [c.198]

    С возникновением и развитием мезофазы формирование состава и молекулярной структуры КМ происходит за счет термохимических превращений в объемах газопаровой и конденсированных изотропных и жидкокристаллической фаз (гомогенный процесс) и на границах раздела этих фаз (гетерогенный процесс). Однако и в этом случае КМ представляет собой объединение множеств органических соединений, развивающееся в направлении накопления углерода за счет образования полициюшческих конденс1фованных ароматических молекулярных структур. Поэтому вопрос о составе и молекулярном строении КМ на этом и последующих этапах формирования нефтяного углерода приобретает особое значение, поскольку именно на стадии мезофазных превращений формируется надмолекулярная структура высокотемпературных форм нефтяного углерода [100]. Однако молекулярная структура нефтяного углерода в рассматриваемом аспекте изучена слабо, преимущественно методами, дающими информацию о среднестатистической молекуле или молекулярноструктурной единице, относящейся ко всей массе объекта исследования, базируясь на известных гипотезах о молекулярной структуре углеродных материалов [35,36,40,93,116]. [c.40]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    В предыдущих разделах было показано, что параметры, хара ктеризующие акустические свойства полимерных материалов, в значительной степени зависят от их структуры. Это особенно важно для исследования аморфных полимеров, для которых прямые структурные методы, как правило, не дают достаточной информации. Между тем сведения о надмолекулярной организации аморфных полимеров, получаемые в результате акустических исследований, обычно скудны. Это обусловлено, в частности, тем, что акустические измерения зачастую проводятся в сравнительно узком интервале температур. Причиной, препятствующей получению пп-формации о структуре полимеров, является и различие в применяемых методах акустических измерений, затрудняющее сопоставление экспериментальных данных. В связи с этим были предприняты [19] исследования акустических свойств некоторых широко распространенных аморфных полимеров в широком интервале температур методом свободных крутильных колебаний. Объектом исследований служили следующие материалы атактический полистирол, поливинилхлорид, полиметилметакрилат, поликарбонат, полисульфои. [c.277]

    Обычно углеродные материалы разделяют на два класса гомогенно графитирующиеся и неграфитирующиеся [6]. Такая классификация весьма условна, поскольку, как показано в ряде работ [7, 8], упорядочение структуры при термообработке происходит в любом углеродном материале, включая такой классический пример неграфитирующегося мапериала, как стеклоуглерод. С целью проверки этого положения термохимическим методом в качестве объектов исследования были взяты углеродные волокна, полученные на основе различных полимеров. Ими являлись углеродные волокна на основе волокон из полиакрилонитрила, гидратцеллюлозы и фенолформальдегидной смолы. Первые два вида волокон относят [1] к частично графитирующимся материалам, волокно на основе фенолформальдегидной смолы — к неграфитирующимся материалам. Температуры термообработки углеродных волокон изменялись в диапазоне 1750—3000 К- [c.80]

    Долгое время белки, не содержащие остатков ys, считались неудобными объектами изучения механизма свертывания, и уровень их 1 сследований в этом плане значительно уступал цистеинсодержащим белкам. Ситуация начала меняться во второй половине 1980-х годов и к настоящему времени две группьг белков, если не поменялись местами, то во всяком случае сравнялись по проявляемому к ним вниманию и результатам исследования. Повышенный интерес к белкам без нсульфидных связей был вызван появлением универсального экспериментального метода А. Фершта, открывшего широкие перспективы, реред исследованиями структуры и стабильности всех состояний белковой цепи на пути ее свертывания [ПО—ИЗ]. Он будет предметом детального анализа в этом и следующем разделах. Но сначала несколько слов о предшествующих работах в данной области. [c.385]

    Оба подхода к исследованию процесса горения — при бесконечно большой или конечной скорости реакции — применяются в этой книге к изучению газового факела. Выбор его в качестве объекта исследования объясняется, с одной стороны, практическим значением газового факела самого по себе и в виде основы факельного способа сжигания любого топлива. С другой стороны, общность аэродинамической структуры факела и газовых струй и процессов переноса в них позволяет эффективно использовать при исследовании факела методы и результаты теории турбулентных струй — одного из наиболее развитых разделов прикладной га-зоюй динамики 1Л. I 10 221. Это относится к так называемому диффузионному факелу (горение неперемешанных газов), а также к гомогенному факелу (горение однородной смеси). [c.4]


Смотреть страницы где упоминается термин Структура раздела Объекты и методы исследования: [c.283]    [c.138]    [c.170]   
Смотреть главы в:

Методические рекомендации по выполнению научно-исследовательских дипломных работ по химии и химической технологии -> Структура раздела Объекты и методы исследования




ПОИСК





Смотрите так же термины и статьи:

Метод структур



© 2024 chem21.info Реклама на сайте