Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды электрокинетические явления

    В коллоидных растворах на границах раздела фаз возникают электрические заряды. Для понимания электрических свойств коллоидно-дисперсных систем необходимо изучение электрокинетических явлений в них, которые связаны с взаимодействием коллоидов с электролитами и наблюдаются при движении одной фазы относительно другой. [c.310]


    Электрокинетические явления в коллоидно-дисперсных системах ii связанное с этими явлениями наличие электрических зарядов у КОЛЛОИДОВ открыл Ф. Ф. Рейсс (1808). В опытах Рейсса в кусок влажной глины ] (рис. 90) были вставлены две стеклянные трубки [c.310]

    Явления адсорбции и смачивания, электрокинетические явления, процессы коагуляции, вопросы устойчивости коллоидных систем и многие другие не могут быть поняты без изучения свойств и особенностей поверхности раздела, в частности ее энергетических характеристик. Поэтому учение о поверхностных явлениях и адсорбции составляет центральный раздел коллоид-ной химии. [c.87]

    В современной химии коллоидов раздел электрокинетических явлений весьма важен и тесно связан с другими проблемами коллоидной химии, в которых рассматриваются различные свойства высокодисперсных систем и поверхностные явления. Такое положение обусловливается как значением теоретических вопросов в области электрокинетических явлений, так и многими важными их практическими приложениями. [c.5]

    Изучение электрокинетических явлений коллоидов показало, что у поверхности частиц образуется двойной электрический слой из зарядов противоположного знака и на границе раздела фаз возникает скачок потенциала. [c.358]

    Ряды Гофмейстера. Биохимик часто сталкивается с явлением, которое называется рядами Гофмейстера или лиотропными рядами. Найдено, что если сравнивать влияние ряда катионов или анионов на высаливание или на повышение растворимости белков, на вязкость лйо-фильных коллоидов, электрокинетический потенциал и ряд других физических, химических или биологических свойств, то наблюдается определенная последовательность, или ряды, ионов, которые называют лиотропными рядами или рядами Гофмейстера. Например, для анионов обычно наблюдаются ряды [c.105]

    Перечисленные вопросы выходят за пределы коллоидной химии их решение является одной из основных задач специалистов различных научных областей физики, науки о коллоидах, физической химии молекулярных растворов, электрохимии. Надо отметить, что в этих областях науки имеется много общих вопросов, относящихся к проблемам разбавленных и концентрированных растворов, осмоса и набухания, электрокинетических явлений, электродных и других процессов. Поэтому установление закономерностей взаимодействия коллоидных частиц возможно прежде всего на основе теории молекулярных и ионных растворов, совершенствование которой связано с преодолением больших трудностей [391]. [c.90]


    Г. ЭЛЕКТРОХИМИЯ коллоидов 142. Общая характеристика электрокинетических явлений [c.319]

    Электрокинетические явления приобрели большое значение для теоретических исследований и практической деятельности. С-Потенци-ал связан с устойчивостью коллоидных систем. Его изучение позволило установить важные детали в структуре и свойствах коллоидов. [c.207]

    Электрокинетические явления. В случае наложения на раствор, содержащий заряженный коллоид, электрического поля частицы будут двигаться к аноду, если они заряжены отрицательно, и к катоду, если они заряжены положительно. Это явление, которое сходно с движением любого иона в электрическом поле, называется электрофорезом. Если частицы нерастворимы и образуют полупроницаемую перегородку или мембрану, то приложенное электрическое поле заставляет жидкость (обычно воду) проходить через поры. Относительное движение растворителя и твердой фазы будет таким же, как если бы твердые частицы могли двигаться, т. е. растворитель движется по направлению к катоду, если перегородка или мембрана заряжена отрицательно. В этом явлении, которое называется электроосмосом, растворитель переносится ионами вдоль твердой поверхности вблизи от нее, причем ионы имеют знак, противоположный знаку поверхности. [c.622]

    Если по оптическим и молекулярно-кинетическим свойствам суспензии и золи с твердой дисперсной фазой резко различны, то по агрегативной устойчивости они имеют много общего. Как правило, частицы суспензий, равно как и частицы лиофобных коллоидов, имеют на поверхности двойной электрический слой или сольватную оболочку. Электрокинетический потенциал частиц суспензий можно определить с помощью макро- или микроэлектрофореза, причем он имеет величину того же порядка, что и -потен-циал частиц типичных золей. Под влиянием электролитов суспензии коагулируют, т. е. их частицы слипаются, образуя агрегаты, В определенных условиях в суспензиях, так же как и в золях, образуются пространственные коагуляционные структуры, способные к синерезису. Явления тиксотропии и реопексии при соблюдении соответствующих условий проявляются у суспензий почти всегда в большей степени, чем у лиофобных коллоидных систем. [c.367]

    Кроме описанного в тексте применения для анализа смесей коллоидов, электрокинетические явления получили ряд других практических применений. Электроосмос применяется в производственных масштабах для очистки воды от электролитов и других примесей. Вода, получающаяся при этом, не отличается от дестиллированной [И. И. Жуков, Успехи химии, 12, -265 (1943) . Другая техническая задача, которая может быть решена при помощи электрокинетических процессов, это обезвоживание различных коллоидных систем, которые другими способами обезвоживаются с большим трудом. Так, посредством электрофореза латекса осаждают сырой каучук на ткани для выделения каучука или для получения прорезиненной ткани. При дублении кожи коллоидный дубитель с помощью электрофореза вводится в поры кожи. Применяют электрофорез и для очистки разных коллоидов (например, клеев) от примесей электролитов. Этот способ применяется в больших масштабах также в химической и фармацевтической промышленности для очистки каолина от примесей [В. Г. Хомяков, В. П. Машовец, Л. Л. Кузьмин, Технология электрохимических производств, Госхимиздат, М.— Л 1949, стр. 170—183]. [c.720]

    При соударении двух частиц мелсду ними действуют силы как притяжения, так и отталкивания. Обычно считают, что первые силы — это силы вандерваальсова типа, тогда как в отношении вторых полагают, что они обусловлены взаимодействием заряженных поверхностей частиц. Когда преобладают силы притяжения, эффективность соударения велика, а устойчивость мала. Возрастание сил отталкивания затрудняет слипание частиц, т. е. повышает устойчивость системы. Следовательно, электрические свойства межфазной поверхности, наиболее отчетливо проявляющиеся при электрокинетических явлениях, должны иметь существенное значение для устойчивости коллоидных систем. Эти свойства сильно зависят от присутствия электролитов, чем и объясняется влияние последних на устойчивость коллоидов. [c.193]

    Детальное исследование электрокинетических явлений коллоид-по-дисиерсных систем позволило сделать ряд общих выводов. [c.313]

    Нерастворяющий объем [1] — одно из проявлений лиофильности. Между тем, теория двойного слоя (ДС) и электрокинетических явлений развивалась преимущественно применительно к лиофобным коллоидам. Однако и лиофильные коллоидные частицы несут заряд, и естественно поставить вопрос о взаимоотношении нерастворяющего объема и ДС. [c.96]

    Занимаясь длительное время потенциометрическим анализом и разрабатывая новые методы онределения концентрации водородных ионов, И. И. с сотрудниками (В. М. Гортиков, Г. П. Авсеевич, Ю. А. Болтунов) создал сурьмяный электрод (1929—1932), позволяюш ий определять pH с точностью, не уступаюп ей хингидронному электроду и в более широком диапазоне значений pH. Такой сурьмяный электрод получается нанесением сурьмы на платину электролизом ацетонового раствора хлористой сурьмы. И. И. применил сурьмяный электрод для дифференциального потенциометрического титрования и показал его преимущества перед другими электродами. Работая в области электродных потенциалов, И. И. исследовал электрохимические и каталитические свойства гладких слоев платиновых мета.ллов (1933), полученных электролизом, и нашел, что свойства таких гладких слоев весьма близки к свойствам платиновой черни, что привело к ряду выводов в отношении методов определения концентрации водородных ионов. Дальнейшие работы И. И. проводились в области электрохимии коллоидов или, более точно, в об,т[асти электрокинетических явлений в гидрофобных коллоидах. Началом этих работ (1928) явились исс,ледования влияния электролитов на суспензии каолина, разработка оптимальных условий коагуляции при очистке невской воды и другие. Основную ро,ль в этих процессах И. И. отводи,л электрокинетическому потенциалу. [c.7]


    Из теоретических вопросов упомянем о концепции двойного электрического слоя и электрокинетическом потенциале. Идея двойного электрического слоя на границе двух фаз была выдвинута более 100 лет назад физиком Квинке для объяснения механизма открытого им потенциала протекания. Эта идея была широко использована в различных областях науки, в частности в физике (теории поля и электростатике), а также в электрохимии. Понятие об электрокинетическом потенциале было введено Фрейндлихом и Смолуховским в начале настояш его столетия и было также широко применено для освещения многих коллоидно-химических и электрохимических проблем, где ставился вопрос о природе и свойствах поверхностных слоев, разделяющих отдельные фазы, с учетом их взаимодействия. Электрокинетический потенциал играет большую роль, как известно, в вопросах устойчивости суспензоидных коллоидов, коагуляции, пептизации, в учении о структурах и структурообразовании, в явлениях [c.5]

    Для объяснения явлений, связанных с процессом ионного обмена, было предложено использовать теорию двойного электрического слоя, выдвинутую Гельмгольцем [235] и видоизмененную позднее другими авторами [202, 522] для объяснения электроки-нетических свойств коллоидов. Хотя результаты обширных исследований электрокинетических свойств различных коллоидных систем, проведенных после первой классической работы в этой области в 1856 г. [235], убедительно доказали, по мнению многих авторов, существование двойного электрического слоя на поверхности большинства коллоидов, вопрос о происхождении и структуре двойного электрического слоя все еще является основной проблемой коллоидной химии. Но классической теории Гельмгольца, двойной слой состоит из двух жестких электрических слоев, аналогичных обкладкам конденсатора. Классическая модель двойного слоя Гельмгольца была модифицирована последующими работами других авторов, которые принимают, что двойной слой состоит из внутреннего неподвижного слоя и диффузного подвижного внешнего слоя зарядов. Существование заряженных слоев обусловлено адсорбированными ионами, которые отличаются от ионов, уже имеющихся во внутренней части коллоида, и определяют большую часть электрокинетических свойств коллоидной системы. Ионы, находящиеся во внешнем диффузном слое коллоида, распространяются во внешнюю жидкую среду. Нри этом нет четкой границы между ионами внешнего диффузного слоя и ионами внешней среды, находящимися с ними в равновесии. Мы можем поэтому принять, что концентрация ионов, из которых состоит диффузный сло11, непрерывно изменяется и зависит от концентрации и значений pH внешнего раствора. Если добавкой посторонних ионов изменить концентрацию ионов во внешнем растворе, то существующее равновесие нарушается и устанавливается новое. Некоторые из новых ионов ири этом входят в диффузный внешний [c.15]

    В основе всякого электролиза лежат процессы разлол ения веществ или получения новых продуктов на грашще электрод — раствор при помощи электрического тока. При электролизе в зависимости от фазово-дисперсного состояния компонентов, содержащихся в растворе, могут также наблюдаться явления, связанные с электрокинетическими. свойствами коллоидов. При этом могут протекать электрохимические реакции восстановления и окисления, сопровождающиеся образованием твердых или газообразных продуктов, процессы восстановления и окисления без выделения самостоятельной фазы и процессы, сопровождающиеся растворением материала электродов. [c.11]


Смотреть страницы где упоминается термин Коллоиды электрокинетические явления: [c.10]    [c.10]    [c.250]    [c.30]    [c.129]    [c.3]    [c.83]    [c.193]    [c.313]    [c.313]   
Физическая и коллоидная химия (1964) -- [ c.319 , c.320 ]

Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Электрокинетические явлени

Электрокинетические явления



© 2025 chem21.info Реклама на сайте