Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платиновые металлы физические свойства

    ПЛАТИНОВЫЕ МЕТАЛЛЫ — груп па сходных между собой по физическим и химическим свойствам металлов рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir, платина Pt. В природе встречаются вместе с платиной. Все П. м. стойки к химическим реагентам, образуют многочисленные комплексные соединения. [c.193]

    Большая твердость осмия (0,7 по шкале Мооса), пожалуй, то из его физических свойств, которое используют наиболее широко. Осмий вводят в состав твердых сплавов, обладающих наивысшей износостойкостью. У дорогих авторучек напайку на кончик пера делают из сплавов осмия с другими платиновыми металлами или с вольфрамом и кобальтом. Из подобных же сплавов делают небольшие детали точных измерительных приборов, подверженные износу. Небольшие — потому что осмий мало распространен (5-10 % веса земной коры), рассеян и дорог. Этим же объясняется ограниченное применение осмия в промышленности. Он идет лишь туда, где при малых затратах металла можно получить большой эффект. Например, в химическую промышленность, которая пытается использовать осмий как катализатор. В реакциях гидрогенизации органических веществ осмиевые катализаторы даже эффективнее платиновых. [c.203]


    Физические свойства платиновых металлов при их относительно малой химической активности необычайно ценны. Основные свойства платиновых металлов приведены в табл. 12.38. [c.377]

    Химические и физические свойства платиновых металлов [c.216]

    Такого плана я пытался придерживаться при подготовке второго издания Общей химии . Мною введены две новые главы, посвященные атомной физике (гл. П1 и Vni). В этих главах довольно подробно рассмотрены вопросы, связанные с открытием рентгеновских лучей, радиоактивности, электронов и атомных ядер, описана природа и свойства электронов и ядер, изложена квантовая теория, фотоэлектрический эффект и фотоны, теория атома по Бору, отмечены некоторые изменения наших представлений об атоме, внесенные квантовой механикой, рассмотрены другие вопросы учения о строении атома. Все это позволит студенту первого курса вычислить энергию фотона света данной длины волны и предсказать, приведет ли поглощение света данной длины волны к расщеплению молекулы на атомы. Некоторые разделы элементарной физической химии в книге изложены подробнее, чем это было сделано в первом издании. Введена отдельная глава, посвященная биохимии. Значительной переработке подверглось изложение химии металлов. Рассмотрение вопросов, относящихся к химии металлов, начинается теперь с главы, в которой показаны характерные особенности металлов и сплавов и описаны методы добычи и очистки металлов. Затем следуют три главы, посвященные химии переходных металлов в первой главе рассмотрены скандий, титан, ванадий, хром, марганец и родственные им металлы во второй — железо, кобальт, никель, платиновые металлы в третьей — медь, цинк, галлий, германий и ближайшие к ним по свойствам металлы. В той или иной мере пересмотрено и большинство других глав. [c.10]

    Медь, получаемая из сульфидных руд пирометаллургическим способом, содержит около 1 % примесей — таких, как никель, сурьма, свинец, теллур, селен, висмут, мышьяк, сера, золото, серебро, а в ряде случаев и металлы платиновой группы. Наличие в меди даже небольших количеств примесей сильно понижает ее физические свойства (например, электрическую проводимость, пластичность и др.). Для получения меди высокой чистоты из пирометаллургической меди и попутного извлечения из нее благородных металлов в продукт, удобный для дальнейшей переработки, ее подвергают электрохимическому рафинированию. В настоящее время около 90 % всей добываемой меди обрабатывают таким образом. [c.120]

    Сравнение физических и химических свойств элементов восьмой группы показывает, что железо, кобальт и никель, находящиеся в первом большом периоде, очень сходны между собой и в то же время сильно отличаются от элементов двух других триад. Поэтому их обычно выделяют в семейство железа. Остальные шесть стабильных элементов восьмой группы объединяются под общим названием платиновых металлов. [c.522]


    Физические свойства. Платиновые металлы имеют ряд аллотропических видоизменений. Чистые металлы обладают значительной прочностью и пластичностью. На механические свойства их очень сильно влияют примеси (табл. 34). [c.142]

    ФС Таблица 22.13. Физические свойства хлоридов платиновых металлов [c.190]

    Распространение, выделение и анализ платиновых металлов подробное описание физических свойств металлов и другие ценные сведения. [c.490]

    Семейство железа объединяет металлы, не только близкие по физическим и химическим свойствам, но и сильно отличающиеся от металлов остальных двух триад. Платиновые металлы, очень сходные по свойствам и трудноотделимые друг от друга, резко отличаются от металлов семейства железа и никогда не залегают вместе с ними в литосфере. [c.423]

    Как видно из табл. 64, у атома железа нет вакантных подуровней, что ограничивает возможность возбуждения его электронов у атома Ни весь подуровень 4/ свободен, у атома Оз два свободных подуровня 5/ и 5 . Поэтому высшее окислительное число железа +6, а рутения и осмия +8. Достройкой электронны.х уровней у атомов -металлов в конечном итоге определяются физические и химические свойства. -Металлы широко используются в качестве конструкционных материалов. Медь, железо, золото и серебро были известны ещ,е в глубокой древности. Давно используются в технике такие металлы, как 2п, N1, Со, Мп, Сг и . Но в последние десятилетия вовлечены в сферу применения Т , 2г, V, ЫЬ, Та, Мо, Ке и платиновые металлы. Современные методы металлургии позволили получать эти металлы высокой степени чистоты. Большинство -металлов было открыто еще в прошлом веке. И только технеций и рений открыты в нашем столетии (Не — в 1924 г. Идой и Вальтером Ноддак Тс — в 1937 г. из молибдена в результате ядерной реакции). Использование -металлов в качестве конструкционных материалов в современной технике позволило решить ряд сложных технических проблем. [c.322]

    Все гексафториды платиновых металлов (некоторые их физические свойства приведены в табл. 5) представляют собой твердые вещества с повышенным давлением паров при комнатных температурах. Вследствие повышенной реакционной способности этих фторидов их нужно хранить в закрытых сосудах. В качестве материала сосудов следует применять никель или монельметалл. [c.397]

    Физические свойства металлов платиновой группы сходны между собой (табл. 4). Это—очень тугоплавкие труднолетучие металлы светло-серого цвета разных оттенков. По удельным весам платиновые металлы разделяются на легкие (рутений, родий, палладий) и тяжелые (оомий, иридий, платина). Температура плавления и кипения убывает слева направо в обеих триадах (от рутения до палладия и от осмия до платины) и воз-)астает снизу вверх по вертикали в периодической системе. -1аиболее тугоплавки осмий и рутений, самый легкоплавкий — палладий. При высоких температурах наблюдается улетучивание платины, иридия, осмия и рутения. Рутений постепенно улетучивается при сильном прокаливании на воздухе вследствие образования летучей четырехокиси. Иридий теряет в весе при температуре около 2000° С. Осмий легко сгорает на воздухе, образуя летучий окисел 0б04. Осмий, рутений и родий очень тверды и хрупки. Платина и палладий (ковкие металлы) поддаются прокатке п волочению. Иридий поддается механической обработке лишь при температуре красного каления. [c.8]

    Все платиновые металлы, за исключением палладия, образуют тетрафториды, однако, как видно из табл. 5, они обладают различными физическими свойствами. Свойства тетрафторида осмия [c.405]

    Компактный рений представляет собой серебристо-белый металл, по внешнему виду напоминающий платину. Некоторые физические свойства рения приведены в табл. 4. Следует отметить зависимость свойств рения от чистоты и способов его получения и обработки. По ряду физических свойств рений приближается к тугоплавким металлам VI группы таблицы Д. И. Менделеева (молибдену, вольфраму), а также к металлам платиновой группы [157, 288, 469, 560]. [c.17]

    В полном соответствии с положением в таблице Менделеева рений во многом похож на марганец. Однако он намного тяжелее и, если можно так выразиться, благороднее своего более распространенного аналога. По устойчивости к действию большинства химических реагентов рений приближается к своим соседям справа — платиновым металлам, а по физическим свойствам — к тугоплавким металлам VI группы — вольфраму и молибдену. С молибденом его роднит и близость атомного и ионных радиусов. Например, радиусы ионов Re и Мо отличаются всего на 0,04 А. Сульфиды MoSa и ReSa образуют к тому же однотипные кристаллические решетки. Именно этими причинами объясняют геохимическую связь рения с молибденом. [c.196]

    ФС Таблица 22.12. Физические свойства оксидов платиновых металлов [c.189]

    Нахождение, физические и химические свойства. Осмий представляет вместе с иридием главную составную часть встречающегося в платиновой руде осмистого иридия. Его окраска голубовато-белая, подобная цинку. Из всех платиновых металлов осмий имеет наивысшую т. пл., лежащую около 2700°. Осмий находит применение в промышленности, в виде сплава с вольфрамом и хромом, в качестве калильных нитей в электрических лампах. По сравнению с иридием его влияние на твердость платины почти в три раза больше. Платиновые сплавы с 15—25% иридия вследствие этого могут быть заменены сплавом с 6—10% осмия. [c.358]


    Все шесть металлов сходны между собой как по физическим, так и по химическим свойствам. Весьма характерна для большинства платиновых металлов способность растворять газы,в частности водород, причем наибольшей активностью обладает палладий. Кривая на рис. 102 показывает изменение растворимости водорода в палладии с изменением температуры. [c.318]

    Электроды. Чаще всего электроды изготовляют из платины, но иногда применяются медь и ее сплавы (латунь), а также другие металлы. Преимущество платиновых электродов состоит в их относительно высокой инертности и, кроме того, их можно прокаливать для обезжиривания и удаления органических соединений или газов, оказывающих вредное влияние на физические свойства осадка. Некоторые металлы (особенно висмут, цинк и галий) нельзя выделять непосредственно на поверхности платинового катода, чтобы не повредить его поверхность перед электролизом растворов этих металлов на платиновый электрод должно быть нанесено защитное медное покрытие. [c.24]

    Прп рассмотрении прочности ацидокислот и их солей приходится учитывать много факторов заряд центрального атома и его радиус, свойства лигандов, их радиусы, способность к поляризации, физические и химические свойства ионов внешней сферы. Например, ионы трех- и четырехвалеитных металлов, особенно платиновые металлы, дают прочные комплексы. Ион NO3- дает мало прочные, ионы S N , С2О42- дают, как правило, прочные комплексы. [c.63]

    HF вступает в обменную реакцию с большим числом неорганических галогенидов и оксигалогенидов. Исключениями, заслуживающими внимания, являются хлориды серы, металлов платиновой группы, золота и кислорода. Фтористый водород применяют во всех промышленных процессах в качестве реагента для обменных реакций вследствие его низкой стоимости и идеальных физических свойств. Для лабораторных обменных процессов фтористый водород не так важен, так как обычно можно использовать реагенты, более удобные в обращении. Homiimo этой проблемы, основной недостаток фтористого водорода заключается в относительной трудности проведения обменных процессов до полного завершения и трудности извлечения непрореагировавшего фтористого водорода из получаемого продукта. [c.341]

    Висмут занимает промежуточное место между металлами и полу-цроводниками и, отличается по физическим свойствам как от тех, так и от других. Особенно это различие проявляется при изучении внешнего фотоэффекта. Особые свойства полуметаллов типа В1, 5Ь, Аз были рассмотрены Вильсоном, Моттом и др. на основании представления, что валентные электроны у них размещаются в двух слегка перекрывающихся энергетических зонах. В случае платины, нанесенной на висмут, таким образом, еще больще увеличивается вероятность обмена электронами между активными центрами платины и носителем и уменьшается вероятность ионизации платины. Наконец, еще раз отметим, что платиновую ч< рнь можно рассматривать как атомарную платину, фиксированную кристаллами платины. Здесь валентные электроны активных центров, т. е. адсорбированных атомов платины, имеют общую зону проводимости с носителем, вероятность ионизации активных центров крайне мала, хотя и конечна. [c.157]

    Некоторые физические свойства плтатины и платиновых металлов [c.441]

    Физические свойства. У. известен в виде двух кристаллич. модификаций — алмаза и графита. Термодинамически стабильным при обычных условиях является графит. Область устойчивости алмаза находится при высокпх давлениях, однако благодаря кинетич. затрудненности перехода в графит он также существует при обычных условиях. Расчетным путем получено следующее ур-ние для кривой равновесия алмаз графит 7(атм) = 7000 - - 27 Г (при Т> >1200° К). Тройная точка равновесия алмаз гра-фит гжидкий У. на диаграмме состояния У. находится ок. 3800+200° и 125 кбар. Для твердого У. характерно также состояние с неупорядоченной структурой, называемое часто аморфным У. кокс, сажа, уголь древесный, активный уголь и др. Все формы У. нерастворимы в обычных неорганич. и органич. растворителях и растворяются в расплавленных металлах железе, кобальте, никеле, платиновых металлах и др., из к-рых при охлаждении У. кристаллизуется в виде графита или карбидов металлов. Нек-рые физич. свойства кристаллов алмаза и графита приведены в таблице. [c.153]

    Сборник охватывает практически все направления научных интересов А. А. Гринберга, которые теперь плодотворно развиваются его учениками и последователями. Это главным образом координационные исследования в области физической химии координационных соединений платиновых металлов кислотно-основные и окислительно-восстановительные свойства комплексов, кинетика и механизм реакций замещения и изотопного обмена, а также фотохимия и термохимия координационных соединений достаточно широко представлен раздел биоактивных координационных сое-диаедил пенлатиновых металлов. [c.6]

    Из данных табл. 9 и 10 следует, что перенапряжение кислорода на золоте, платине и олове, которые менее активны к кислороду, больше, чем на других веществах, более активных к нему. Объяснять это изменением физических свойств кислорода не представляется возможным. Наблюдающееся после выключения тока постепенное падение потенциала, например, платинового эле1Ктрода с остановками в некоторых точках привело к заключению, что причиной поляризации возможно является образование на аноде нестойких высших окислов. Потенциал выделения кислорода на гладком никелевом электроде равен потенциалу выделения на никелевом аноде, покрытом слоем N 02. Такая же картина наблюдается для гладкого свинцового электрода и того же электрода, покрытого слоем РЬОг. Образование таких высших окислов не согласуется с поведением металлов при обычных условиях. Однако, возможно, что в специфических условиях электролиза, когда на поверхности электрода образуется значительное количество атомарного кислорода,, образование подобных окислов облегчается. Поэтому при прекращении прохождения тока, что влечет за собой постепенный распад образовавшихся на поверхности металлов многоатомных адсорбционных слоев кислорода, происходит распад высших окислов металлов, как, например, №0г. [c.89]


Смотреть страницы где упоминается термин Платиновые металлы физические свойства: [c.403]    [c.31]    [c.313]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.503 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.503 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.503 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.503 ]

Химия справочное руководство (1975) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы свойства

Металлы свойства физические

Платиновые металлы

Платиновые металлы свойства



© 2025 chem21.info Реклама на сайте