Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка разных компонентов

    Очистка разных компонентов [c.183]

    На Омском нефтеперерабатывающем заводе сырьем для производства битумов служит главным образом асфальт деасфальтизации, гудрон и экстракт селективной очистки масел. В зависимости от месячных планов перевозок и с учетом требующегося ассортимента битума по маркам завод, исходя из разработанной технологии и наличия ресурсов сырья, использует разные компоненты. Так, для получения битума БН-1 берут 70% асфальта деасфальтизации и 30% гудрона битума БН-П—80% асфальта деасфальтизации и 20% гудрона битума БН-1П—только асфальт деасфальтизации. [c.28]


    Локальная очистка. Применяется для извлечения концентрированных загрязненных стоков отдельных цехов. Неорганические соединения в сточных водах содержатся в виде растворимых и нерастворимых веществ, способных восстанавливаться, окисляться, осаждаться, адсорбироваться в виде индивидуальных веществ и комплексов. Поэтому с учетом особенностей состава стоков, содержания в них примесей и разных компонентов применяются разные методы локальной очистки [0-55 42]. В зависимости от состава стоков применяют коагуляцию, фильтрование, активную адсорбцию углем [0-55], осаждение известью, цементацию, электролиз, обратный осмос, ионный обмен, флокуляцию [0-55 0-43 44], Указывают [0-49], что применяемые ранее ме-,тоды извлечения из сточных вод металлов осаждением, осветлением и фильтрованием через песок давали недостаточный эффект и лишь после вторичной очистки бумажным пресс-фильтрованием удавалось снизить концентрацию металлов до порядка 10 мг/л. [c.11]

    Дистиллят подвергали очистке разными методами и определяли окисляемость очищенных масел и их хроматографический состав. Эти исследования показали несоответствие между данными по окисляемости смесей углеводородных компонентов масла и тем составом масла, который отвечал оптимальной степени его очистки. Это привело нас к выводу о том, что принятый хроматографический метод разделения масел не позволяет четко фракционировать ароматические углеводороды. Особенно нечетко они разделяются десорбцией бензолом. Поэтому автор совместно с Л. Червовой предпринял исследование разделения некоторых фракций ароматических углеводородов, выделенных изооктаном и бензолом из автоловой фракции татарских нефтей путем дополнительной обработки этих фракций фенолом, содержащим 20% воды. Некоторые результаты этого исследования помещены в табл. 1. [c.13]

    При переработке мазутов, содержащих значительное количества полициклических углеводородов с большим числом колец и короткими алифатическими цепями в молекулах, легко окисляющихся и ухудшающих вязкостно-температурные свойства масел, рассмотренные выше методы очистки оказываются недостаточно удовлетворительными. Поэтому с увеличением потребления смазочных масел и необходимостью перерабатывать мазуты не только отборных масляных нефтей, но и менее качественных получила распространение селективная очистка, т. е. очистка при помощи селективных (избирательных) растворителей. Этот метод очистки основан на подборе растворителей, обладающих при определенной температуре и соотношении количества растворителя и очищаемого масла разной растворяющей способностью к нежелательным и полезным компонентам масла. [c.137]


    Для уменьшения потерь ценных компонентов с экстрактом и увеличения выхода рафината, а также с целью получения двух рафинатов разных состава и свойств применяется двухступенчатая очистка фенолом. В этом случае установку оснащают двумя экстракционными колоннами. В первую по ходу сырья подается примерно половина количества фенола, требуемого для очистки, и с верха этой колонны отводится раствор утяжеленного рафината. Утяжеленный рафинат направляется на вторую ступень очистки — во вторую экстракционную колонну, куда вводится остальное количество фенола. С верха второй колонны конечный рафинатный раствор поступает на регенерацию растворителя. Экстрактные растворы I и П ступеней очистки смешиваются и направляются в секцию регенерации фенола из экстрактного раствора. [c.70]

    В настоящее время не существует единых международных норм на допустимое содержание в товарном газе сероводорода, диоксида углерода, сероорганических соединений, азота, воды, механических примесей и т.д. Величина допустимых концентраций этих веществ в газе в разных странах устанавливается в зависимости от уровня техники и технологии обработки газа и от объектов его использования. В России также пока не установлены нормы как на общее содержание серы, так и на содержание OS, Sj и других сернистых соединений в товарном газе, что вызывает затруднения при выборе технологических схем очистки газов от кислых компонентов. Требования, предъявляемые к содержанию сернистых соединений в газах, приведены в табл. 2.2, 2.3. [c.46]

    Одним из условий эффективности селективной очистки масляного сырья является не только четкость отделения парафино-нафтеновых углеводородов от ароматических и смол, но и избирательность растворителя по отношению к ароматическим углеводородам разной структуры. На основании данных [7—9] по избирательной способности к ароматической части сырья, включающей углеводороды разной степени цикличности, исследованные растворители располагаются в следующий убывающий ряд нитробензол >фурфурол> фенол. По отношению к группам компонентов фенол более избирателен, чем фурфурол, т. е. при экстракции фурфуролом парафино-нафтеновая часть менее четко отделяется от ароматической. Это объясняется тем, что избирательная способность растворителя к ароматическим углеводородам разной структуры обусловлена значением дипольного момента молекул растворителя (фурфурол имеет больший дипольный момент, чем фенол), в то время как избирательность к группам компонентов нефтяного сырья определяется КТР сырья в растворителе (для фенола эта температура ниже). [c.60]

    Очистка парными растворителями. Экономическая эффективность производства смазочных масел значительно повышается при комбинировании процессов на одной установке. При производстве остаточных масел применяется очистка парными растворителями (дуосол-процесс), которая сочетает деасфальтизацию пропаном и селективную очистку смесью крезолов и фенола (селекто). Эти растворители обладают ограниченной взаимной растворимостью и разной избирательностью к одним и тем же компонентам сырья, что является следствием структуры их молекул. Пропан вследствие дисперсионных сил взаимодействия молекул хорошо растворяет высокоиндексные неполярные или слабополярные углеводороды остаточного сырья, высаживая из раствора асфальтены, смолы и полициклические ароматические углеводороды, которые растворяются в смеси крезолов и фенола в результате совместного действия полярных и дисперсионных сил. Крезол обладает высокой растворяющей способностью по отношению к ароматическим угле- [c.103]

    Как только адсорбент насыщается поглощаемым компонентом, проводят его регенерацию. Адсорбционная очистка водорода представляет собой циклический процесс поглощения и регенерации. В принципе такой циклический процесс можно проводить в разных аппаратах, организовав перемещение — циркуляцию — адсорбента. Однако транспортирование больших количеств твердого и часто непрочного адсорбента представляет собой сложную инженерную задачу [10, с. 266], особенно при значительном различии давлений в адсорбере и регенераторе. В настоящее время очистку водорода проводят в стационарном слое адсорбента циклическим переключением аппаратов, чередуя периоды адсорбции и регенерации. Поэтому устанавливают обычно три или четыре адсорбера. [c.52]

    Кристаллизацию и растворение можно использовать для разделения благодаря разной растворимости близкокипящих полициклических ароматических углеводородов. Высокие температуры плавления ряда веществ облегчают отделение низкокипящих примесей и получение чистых веществ. Поэтому для очистки широко используют перекристаллизацию, кристаллизацию в сочетании с прессованием для отделения жидких веществ, кристаллизацию — плавление [4], кристаллизацию с добавлением растворителя, смещающего равновесие системы. В связи с значительными различиями в растворимости компонентов, входящих в смеси кристаллов, часто используют экстрактивное растворение ( выщелачивание ) легко растворимых компонентов. Общим недостатком этой группы методов оказывается невысокая селективность разделения, обусловленная сопряженной растворимостью. [c.296]


    Для обеспечения оптимальных условий синтеза содержание компонентов в исходном газе должно быть близким к стехио-метрическому, т. е. должно соблюдаться условие (Нг—СО2) (СО + СО2) =2,01—2,15. Поэтому, как правило, газ подвергают очистке или в него добавляют отдельное компоненты или смешивают разные потоки газа. Суммарная концентрация в сырьевом газе сернистых соединений, вызывающих необратимое от-)авление катализаторов синтеза, не должна превышать 0,2 мг/м 125]. [c.114]

    Эффективность присадок завиоит от глубины очистки масел, их природы и состава. Присадки в зависимости от типа и концентрации улучшают один или несколько показателей эксплуатационных свойств масел, но могут ухудшать при этом другие показатели. Поэтому необходимо выявлять побочное отрицательное действие присадок и искать способы устранения или ослабления этого действия. Перспективно использование в маслах композиций присадок разного назначения. При этом важно установить оптимальное количественное соотношение отдельных компонентов. [c.300]

    Действующие регенерационные установки различаются не только пропускной способностью, но и числом, типом и очередностью процессов. Наиболее крупные централизованные установки перерабатывают до 30—40 тыс. т/год отработанных масел. В регенерированные масла обычно вводят присадки, а иногда добавляют свежие нефтяные масла. На основе исследований, проведенных объединением Вторнефтепродукт , созданы типовые установки разной пропускной способности. Процесс регенерации, осуществляемый па этих установках, состоит из следующих стадий обезвоживания перегонкой в мягких условиях с одновременным удалением немасляных горючих компонентов контактной или перколяционной очистки адсорбентом фильтрования. Такие установки предназначены для регенерации главным образом отработанных индустриальных масел. [c.407]

    В зависимости от геолого-технических условий и целей бурения применяют различные по составу и свойствам растворы и продувочные агенты. Существуют разные классификации буровых растворов в зависимости от вида и состава дисперсионной среды, состава и содержания твердой фазы, облегчающие их выбор, нормирование расхода компонентов, выбор оборудования для приготовления и очистки их [169], [c.35]

    В основе процессов глубокой очистки веществ лежат методы, использующие какой-либо разделительный эффект, обусловленный различием свойств основного компонента и примеси, например разными энергией связи, летучестью, растворимостью и т. п. Для получения веществ высокой чистоты применяют химические, физико-химические, электрохимические, хроматографические, дистилляционные, кристал-лизационные и другие методы. При этом, за редким исключением  [c.314]

    Химические методы очистки материалов являются самыми универсальными. Многообразие химических веществ почти всегда позволяет подобрать реагент, по-разному взаимодействующий с основными и примесным компонентами, например переводящий один их них в осадок или в газообразное состояние. При этом появляется возможность разделить указанные компоненты фильтрацией, перегонкой, газоулавливанием или другими физико-химическими методами. Среди химических реагентов, применяемых в процессах очистки веществ, широко используются минеральные кислоты, щелочи, сильные окислители, а также различные комплексообразователи.Химическая обработка твердых веществ позволяет освободиться лишь от примесных включений, находящихся на их поверхности. Поэтому при очистке твердых веществ проводят их предварительное измельчение. [c.315]

    В основе процессов глубокой очистки веществ лежат методы, использующие какой-либо разделительный эффект, обусловленный различием свойств основного компонента и примеси, например разными энергиями связи, летучестью, растворимостью и т. п. Для получения веществ высокой чистоты применяют химические, физико-химические, электрохимические, хроматографические, дистилляционные, кристаллизационные и другие методы. При этом, за редким исключением, перечисленные методы комбинируют в виде многоступенчатых процессов. Лишь такой подход позволяет получать вещества заданной степени чистоты. [c.345]

    Выделение и очистка. — Выделение гомогенных белков в нативном состоянии — весьма трудная задача, так как большинство белков весьма чувствительно к действию различных агентов и находится в виде смеси близких по свойствам веществ. Растворимость белка минимальна в изоэлектрической точке, а так как изоэлектрические точки разных белков лежат в разных интервалах pH, то создание определенного значения pH ведет к отделению одного компонента смеси от других, особенно при добавлении определенного количества соли или смешивающегося с водой органического растворителя — этилового спирта или ацетона. [c.689]

    Движущей силой процесса поглощения НгЗ и СОг является разность их парциальных давлений в газовой и жидкой фазах.. Парциальное давление этих компонентов в газовой фазе не Зависит от используемого для очистки раствора и определяется как произведение их молярной концентрации на общее давление газа. В то же время парциальное давление компонента в жидкой фазе для заданной молярной концентрации имеет разное значение для различных аминов. Чем выще реакционная способность амина, тем ниже давление кислого компонента газа в растворе. [c.40]

    В первые годы эксплуатации очистку высокосернистого газа от кислых компонентов осуществляли в две ступени с подачей в них растворов МЭА разной концентрации. Показатели установок очистки Мубарекского ГПЗ с использованием раствора МЭА даны в табл. 2.10 >[28]. [c.45]

    Некоторые фибриллярные белки практически нерастворимы в воде, так что все остальные компоненты препарата можно удалить растворением. Растворимые белки чаще всего осаждают из водных растворов путем высаливания, которое сводится к добавлению большого количества соли, например сульфата аммония. Разные белки осаждаются прн разных концентрациях соли, поэтому можно отделить фракцию белков, осаждающихся в заданном интервале концентраций, а затем очищать эту фракцию дальше. Методы, основанные на таком поэтапном осаждении, широко используются как первый шаг очистки, поскольку они позволяют получать сразу большие количества материала. [c.159]

    Резкое изменение концентрации фенолов в сточной воде или других органических компонентов может по-разному отразиться на процессе очистки, так как любая установка может работать только в определенном интервале концентраций компонентов нагрузки. В связи с этим и представляется необходимым вывод математической модели разработанной схемы локальной очистки сточных вод, которая позволит в любой момент времени предсказать вероятную степень очистки, в зависимости от входной нагрузки, и принять необходимое решение относительно дальнейшего проведения процесса. [c.285]

    Товарные бензины готовят смешением бензиновых дистиллятов, получаемых на разных установках в процессе переработки нефти. Набор компонентов зависит от состава технологических установок, включенных в схему завода. Поэтому каждый завод имеет свои рецепты приготовления товарных бензинов в зависимости от комплекса и мощностей бензинообразующих процессов, качества перерабатываемой нефти и заданного ассортимента продукции. Они и определяют необходимую глубину очистки каждого компонента от содержащихся в нем сернистых соединений. [c.69]

    Развиваемый послойный метод располагает большими возможностями для характеристики процесса динамики ионного обмена и ионообме1гной хроматографии в отсутствие и в присутствии комилексообразующих реагентов. Он позволяет раздельно определять концентрации катионной и комплексной форм компонентов смеси im любой стадии процесса, равновесны концентрации ионов в растворе и их распределение по слою ионита. Для примера приведем расчетные и экспериментальные данные по очистке кальция от стронция (при соотношении разделяемой смеси 1 1, при концентрации металлов 0,0LV и величине vim = 100) в присутствии 1 %-ного раствора ЭДТА в качестве комплексообразующего реагента при исходных значениях pH 4 4,5 и 5, что отвечает разным степеням закомплексованности исследуемых ионов и, как следствие, различной степени очистки одного компонента от другого. На рис. 4 представлены выходные кри- [c.95]

    В литературе описано множество методов выделения хромосом из клеток, блокированных в метафазе. Процедуры очистки тоже разнообразны. Одни из них позволяют получить высо-коочищенные препараты, другие—грубую фракцию хромосом, загрязненную разными компонентами клетки. Мы предпочитаем использовать для проведения трансфекции именно такие грубые препараты, во-первых, потому что их получение занимает мало времени, а во-вторых, потому что хромосомы при этом оказываются наименее разрушенными. [c.25]

    Избирательное растворение компонентов масляных фракций в полярных растворителях, протекающее в системе, где постоянно присутствуют две жидкие фазы разного состава, зависит от структурных особенностей молекул растворителя. Строение молекул растворителя определяет его растворяющую способность и избирательность по отношению к углеводородам и неутлеводородаым компонентам масляных фракций, т. е. те два основные свойства, которые учитываются при выборе растворителя для очистки нефтяного сырья. Под растворяющей способностью понимают абсолютную растворимость компонентов масляных фракций в определенном количестве растворителя избирательность характеризует способность растворителя растворять вещества только определенной структуры, что позволяет отделять одни компоненты от дру- [c.51]

    В основу процесса адсорбционной очистки масляного сырья на полярных адсорбентах положена разная адсорбируемость компонентов этой сложной смеси, которая зависит от химического состава этой Смеси и структуры молекул веществ, входящих в ее состав. При адсорбции на полярных адсорбентах полярные силы преобладают над диоперсионными, поэтому адсорбируемость компонентов на адсорбентах такого типа там выше, чем больше дипольный момент их молекул. Адсорбция неполярных веществ, к которым относятся углеводороды, определяется образованием в молекулах углеводородов индуцированного дийоля. В процессе адсорбции в результате сил притяжения на поверхности адсор- [c.258]

    Вязкость масляных фракций, полученных из одной и той же нефтн, растет с увеличением температур начала и конца кипения фракций. Вязкость фракции с одинаковыми пределами перегонки, полученных из разных нефтей или даже полученных из одной нефти, но очищенных разными способами, может оказаться неодинаковой. Вязкость зависит от углеводо юдного состава масляных фракций, который, в свою очередь, определяется химическим составом иефти и способом удаления нежелательных компонентов (очистки). [c.349]

    Адсорбция газов и паров широко применяется для извлечения отдельных компонентов из газовых смесей и для полного разделения смесей. Н. Д. Зел1шскнй впервые предложил использовать активные угли для поглощения отравляющих газов. Активные угли применяют для рекуперации растворителей ацетона, бензола, ксилола, сероуглерода, хлороформа и других, выбросы которых разными промышленными предприятиями оцениваются в сотни тысяч тонн. Несмотря на малые концентрации их в отходящих газах (несколько грамм в1 м ), степень извлечения при адсорбции на активных углях составляет до 95—99%. Десятки миллионов тонн диоксида серы выбрасываются в атмосферу промышленными предприятиями разных стран мира тепловыми электростанциями, предприятиями черной и цветной металлургии, химической н нефтеперерабатывающей промышленности и др. Для улавливания диоксида серы применяют адсорбционные установки, заполненные активными углями и цеолитами. Процесс адсорбции применяют также для очистки воздуха от сероуглерода, сероводорода и т. д. [c.145]

    Содержание в маслах нафтено-парафиновых углеводородов (присутствие чисто нафтеновых без боковых цепей крайне незначительно) в зависимости от происхождения нефти состз1Вляет 50— 75%. С повышением температур выкипания нефтяной фракции увеличивается число атомов углерода в боковых цепях молекул нафтеновых углеводородов, повышаются температура их застывания и индекс вязкости. Нафтеновые углеводороды в оптимальных количествах являются желательными компонентами масел. Ароматические углеводороды практически всегда присутствуют в товарных маслах. Их содержание и структура зависят от природы нефти и температур выкипания фракции чем выше эти температуры, тем больше ароматических углеводородов в ней содержится при этом возрастает доля полициклических (производных нафталина и фенантрена). Ароматические углеводороды в большинстве случаев содержат нафтеновые. кольца и боковые парафиновые цепи разной длины. Ароматические углеводороды (в основном полициклические с короткими- боков1 ши цепями) удаляют из масляного сырья в процессах селективной и адсорбционной очистки, а превращают их в нафтеновые и парафиновые углеводороды — при гидрогенизационных процессах. [c.39]

    Как уже отмечалось, мировое производство смазочных материалов в настоящее время составляет порядка 40 млн т/год, присадок — более 4 млн т/год. Товарный ассортимент указанных продуктов составляет несколько тысяч наименований. Современные смазочные материа ты, особенно ресурсосберегающие масла (масла разного назначения, обеспечивающие наряду со снижением износа трущихся поверхностей уменьшение потерь па трение и экономию топлива и состояише. как правило, из 8 — 15 компонентов), требуют для своего производства 8— 10 технологических установок по получению и очистке базовых ефтяг ых масел, синтезу синтетических основ и разнообразных присадок и по приготовлению твердых добавок эти масла по сложности производства сравнимы зачастую с изделиями маитпостроения. [c.159]

    При хранении и переработке жижки отстаивается древесная смола (7-10%) и одновременно протекают многочисл. превращения ес компонентов из смолы выделяют широкий ассортимент ценных продуктов. Отстоявшаяся жижка имеет плотн. 1,025-1,050 г/см и содержит 6-9% по массе уксусной к-ты и ее гомологов, 2,5-4,5% метанола, 5-6% соед. разных классов (альдегидов, кетонов, сложных эфиров и т.д.), 4,5-14% р-римой древесной смолы и 67-81% воды. Уксусную к-ту извлекают из жижки чаще всего экстракцией и путем ректификации и хим. очистки перерабатывают в пищ. продукт. [c.534]

    Несколько иную картину представляет биоценоз, возкикаюощй в биофильтрах. На поверхности загрузочного материала биофильтра происходит образование биологической пленки микроорганизмы прикрепляются к носителю и заполняют его поверхность. В отличие от биоценоза активного ила, количественный и видовой состав которого практически одинаков во всей системе очистки, на разных уровнях биофильтра создаются свои ценозы микроорганизмов, которые порой резко отличаются не только количественно, но и качественным составом. Это вызвано тем, что по мере прохождения сточной воды через биофильтр за счет жизнедеятельности предыдущего ценоза меняется характеристика загрязнений воды, попадающей на следующий уровень. При этом, естественно, сначала потребляются более лекгоусвояемые загрязнения и, следовательно, преимущественно развивается, микрофлора, усваивающая эти соединения с большей скоростью. В свою очередь, сточная вода обогащается продуктами жизнедеятельности этого ценоза. По мере дальнейшего продвижения воды происходит потребление все более трудно усвояемых компонентов смеси и, следовательно, развиваются другие микроорганизмы, способные их усваивать. В нижней части таких биоценозов в большом количестве скапливаются простейшие и другие организмы, которые функционируют за счет потребления части биологической пленки, оторвавшейся с поверхности носителя. Созданный таким образом биоценоз способен практически полностью извлечь из сточной воды все органические примеси. [c.103]

    Наиболее рациональная и экономичная схема аминовой очистки газа с большим содержанием кислых компонентов приведена на рис. 4.39. В данной схеме, как и в схеме на рис. 4.38, подача раствора в абсорбер осуществляется двумя потоками, но разной стеиени регенерации. Частично (грубо) регенерированный раствор амина отбирается сбоку десорбера и иодается в среднюю секцию абсорбера. Глубокой регенерации иодверга- [c.295]


Смотреть страницы где упоминается термин Очистка разных компонентов: [c.214]    [c.153]    [c.61]    [c.94]    [c.175]    [c.227]    [c.113]    [c.549]    [c.55]    [c.74]    [c.164]   
Смотреть главы в:

Растительный белок -> Очистка разных компонентов




ПОИСК







© 2025 chem21.info Реклама на сайте