Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузная подвижность

    Третьим возможным механизмом образования двойного электрического слоя служит поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Такой дипольный слой, ориентированный на поверхности, представляет собой фактически двойной электрический слой, не являющийся диффузным. Притягивая подвижные заряженные частицы, он может индуцировать вторичные, уже диффузные двойные слои, распространяющиеся вглубь по обе стороны от поверхности раздела фаз. [c.185]


    Капиллярный осмос. Явление капиллярного осмоса, открытое Б. В. Дерягиным [57], состоит в том, что жидкость в капиллярах и порах способна перемещаться под действием градиента концентрации раствора. Причи.чой капиллярного осмоса является диффузность адсорбционных слоев растворенного компонента. Увлечение потоком жидкости подвижной части диффузных слоев с повышенной (или пониженной) концентрацией С х) растворенного вещества приводит к возникновению градиента концентрации. В соответствии с уравнениями термодинамики необратимых процессов это обусловливает, возможность перекрестного эффекта, а именно — течения жидкости под действием перепада концентраций. В связи с тем что граничные слои воды вблизи гидрофильных поверхностей обладают пониженной растворяющей способностью, толщина диффузных слоев того же порядка, что и толщина граничных слоев. В соответствии с теорией [57], это может заметно увеличивать скорость капиллярно-осмотического скольжения, равную [c.24]

    Иониты имеют структуру в виде каркаса, сшитого обычно ковалентными связями. Каркас (матрица) обладает положительным или отрицательным зарядом, который скомпенсирован противоположным зарядом подвижных нонов—противоионов, находящихся в адсорбционной и диффузной частях электрического слоя. Противоионы могут заменяться на другие ноны с зарядом того же знака. Каркас выступает в роли полииона и обусловливает нерастворимость ионита в растворителях. [c.164]

    Неточная оценка Уд. Электрофоретическую подвижность капель в эмульсии обычно измеряют при выбранной силе поля и по этим данным вычисляют потенциал внутренней части диффузного [c.250]

    Третий механизм образования двойного электрического слоя — поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Большинство молекул содержит такие диполи, и они — главная причина ориентации молекул на поверхностях. Слой ориентированных диполей, представляющих собой двойной электрический слой, не является диффузным. Однако притяжением подвижных заряженных частиц такой слой может индуцировать вторичные диффузные двойные слои, распространяющиеся в глубь обеих фаз. [c.166]

    Неподвижный адсорбционный слой содержит, как уже упоминалось, далеко не все противоионы, а лишь определенную их часть, которая не в состоянии целиком компенсировать заряд твердой поверхности, а способна лишь его понизить. Другими словами, в адсорбционном неподвижном слое в результате взаимодействия положительных и отрицательных зарядов остается не нейтрализованным некоторый потенциал, который является частью общего потенциала поверхности твердой фазы. Разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя называется электрокинетическим потенциалом. Этот потенциал обычно обозначают буквой (дзета) и потому называют дзета-потенциалом ( -потен-циал). [c.174]


    Объяснение. В данном опыте твердая дисперсная фаза (глина, гипс) лишена подвижности, поэтому перемещаться в электрическом поле может только дисперсионная среда. Поверхность неподвижного остова глины или гипса в воде приобретает отрицательный заряд за счет адсорбции гидроксильных ионов. Эти ионы (а также часть положительных ионов), прочно связанные с поверхностью глинистых частиц, образуют адсорбционный слой. За адсорбционным слоем находятся положительно заряженные ионы диффузного слоя. Так как твердая поверхность по условиям опыта неподвижна, то связанные с ней ионы адсорбционного слоя не могут перемещаться под [c.184]

    Разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя называется электрокинетическим потенциалом. Этот потенциал обычно обозначают греческой буквой (дзета) и потому называют дзета-потенциалом (1-потенциал). [c.316]

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]

    Диффузионный потенциал возникает на поверхности раздела двух растворов электролитов, различающихся либо по виду электролита, либо по концентрации. Причиной возникновения диффузионного потенциала является различие в подвижностях ионов электролита. Ионы, обладающие большей подвижностью, диффундируют в более разбавленный раствор с большей скоростью, поэтому поверхность соприкосновения двух растворов заряжается положительно со стороны более разбавленного раствора, если катион движется быстрее аниона. Образуется диффузный двойной электрический слой с соответствующим скачком потенциала. Эта разность потенциалов ускоряет медленно перемещающийся ион и замедляет более подвижный, пока не наступит состояние, при котором скорости ионов сравняются. Результирующий ток через границу станет теперь равным нулю. Таким образом, дальнейшее взаимное удаление зарядов прекращается. Стационарная разность потенциалов в пограничном слое между растворами называется диффузионным потенциалом. [c.181]

    Удельная поверхностная проводимость Кз по физическому смыслу не зависит от величины поверхности, а следовательно, и от радиуса капилляров, или иначе, от степени дисперсности системы. Изменение концентрации раствора, как показали экспериментальные данные, мало влияет на величину Кз. Поскольку с ростом концентрации ионы диффузного слоя переходят в плотный слой, отсутствие заметных изменений величины Кз свидетельствует о том, что ионы в плотном слое обладают подвижностью. Отсюда следует, что поверхности ная проводимость обусловлена всеми ионами внешней обкладки двойного слоя. Величина Кз связана с плотностью заряда и в первом приближении равна  [c.214]

    Муни, а также Бикерман дали более широкую интерпретацию поверхностной проводимости. Они обращают внимание на то, что пристенный слой обогащен избыточными ионами, которые составляют диффузный слой. Позтому поверхностная проводимость слагается из конвекционного потока зарядов и из тока, обусловленного подвижностями и количеством избыточных ионов в наружной обкладке двойного слоя. [c.104]

    Электрокинетический ток будет отвечать переносу электрических зарядов в единицу времени вследствие относительного смещения подвижной части двойного слоя при движении частиц как целого со слоем жидкости в пристенном слое. Этот электрокинетический ток прямо пропорционален величине -потенциала и зависит от концентрации таким образом, что при возрастании концентрации электролита в растворе диффузный слой сжимается и -потенциал стремится к нулю, сводя к нулю и величину потенциала седиментации. [c.142]


    В объеме раствора АВСО (рис. 90, а), в котором ионы сохраняют подвижность при наложении электрического поля, концентрация катионов больше, чем анионов, вследствие того, что в этот объем входят избыточные ионы одного знака диффузного слоя. Этот объем Всегда, можно рассматривать как сумму объемов центральной части капилляра вне пределов двойного слоя с радиусом Я—б, где Я — радиус капилляра и б—толщина двойного слоя и объема цилиндрической оболочки с площадью сечения —6)2 на единицу длины. [c.145]

    Если жё мы рассмотрим капилляр, радиус которого и толщина двойного слоя на границе раздела близки друг к другу (рис. 90,6), то нетрудно видеть, что в этом случае объем А В С О будет содержать преимущественно ионы одного знака (в данном случае катионы) диффузного слоя, и поэтому числа переноса в таком капилляре будут определяться главным образом теми подвижностями и концентрациями ионов, которые будут иметь место в двойном слое. [c.146]

    Противоионы размещаются отчасти в плотной части двойного слоя, отчасти в диффузной части. Падение потенциала в диффузном слое меньше общего скачка потенциала, причем тем меньше, чем меньше противоионов находится в диффузном слое. При направленном движении жидкости относительно твердого тела (или, наоборот, твердого тела относительно жидкости) на поверхности твердого тела сохраняется неподвижный слой жидкости. Таким образом, скольжение жидкой фазы относительно твердой происходит не непосредственно на границе твердая фаза — жидкость, а в самой жидкости на расстоянии Д от твердой фазы. Эта величина А имеет молекулярные размеры, сравнимые с размерами молекул. Часть противоионов остается в этом неподвижном слое жидкости, часть — в движущемся. Разность потенциалов между неподвижной частью системы и подвижной получила название электрокинетический потенциал . [c.410]

    Термодинамически -потенциал можно определить как работу, необходимую для переноса единичного заряда из бесконечно удаленного элемента объема раствора на поверхность скольжения. Знак -потенциала обычно совпадает со знаком ф-потенциала. Электрокинетический потенциал является частью ф-потенциала и всегда меньше, чем ф-потенциал. Величина -потенциала непосредственно связана с числом противоионов в диффузном слое и изменяется пропорционально этому числу. Можно считать, что с увеличением толщины диффузного слоя -потенциал повышается. Поскольку электрокинетический потенциал относится к коллоидной частице и обусловливает ее подвижность в электрическом поле, величина этого потенциала может быть измерена экспериментально по скорости движения частиц. Направление же перемещения частиц к катоду или аноду указывает на знак -потенциала. [c.399]

    При втором способе нагрева, фактически без плавления основной массы кристаллов, было достигнуто образование сетки заполи-меризованного олигомера приблизительно с 50%-ным выходом. С другой стороны, полимеризация в первом и во втором случае осуществлялась через стадию перехода протонов олигомера к трансляционно-диффузной подвижности соответственно на 100 и на 80—90%. Образцы, полученные вторым способом, характеризовались низкой прочностью и высокой хрупкостью. Это свидетельствует о том, что в этих условиях полимеризация протекает локально, в местах плавления менее упорядоченных и мелких кристаллов. [c.171]

    Для объяснения явлений, связанных с процессом ионного обмена, было предложено использовать теорию двойного электрического слоя, выдвинутую Гельмгольцем [235] и видоизмененную позднее другими авторами [202, 522] для объяснения электроки-нетических свойств коллоидов. Хотя результаты обширных исследований электрокинетических свойств различных коллоидных систем, проведенных после первой классической работы в этой области в 1856 г. [235], убедительно доказали, по мнению многих авторов, существование двойного электрического слоя на поверхности большинства коллоидов, вопрос о происхождении и структуре двойного электрического слоя все еще является основной проблемой коллоидной химии. Но классической теории Гельмгольца, двойной слой состоит из двух жестких электрических слоев, аналогичных обкладкам конденсатора. Классическая модель двойного слоя Гельмгольца была модифицирована последующими работами других авторов, которые принимают, что двойной слой состоит из внутреннего неподвижного слоя и диффузного подвижного внешнего слоя зарядов. Существование заряженных слоев обусловлено адсорбированными ионами, которые отличаются от ионов, уже имеющихся во внутренней части коллоида, и определяют большую часть электрокинетических свойств коллоидной системы. Ионы, находящиеся во внешнем диффузном слое коллоида, распространяются во внешнюю жидкую среду. Нри этом нет четкой границы между ионами внешнего диффузного слоя и ионами внешней среды, находящимися с ними в равновесии. Мы можем поэтому принять, что концентрация ионов, из которых состоит диффузный сло11, непрерывно изменяется и зависит от концентрации и значений pH внешнего раствора. Если добавкой посторонних ионов изменить концентрацию ионов во внешнем растворе, то существующее равновесие нарушается и устанавливается новое. Некоторые из новых ионов ири этом входят в диффузный внешний [c.15]

    Молекулы белков в мембранах также проявляют диффузную подвижность. Однако вследствие большей массы они движутся существенно медленнее. Так, время корреляции вращения родопсина в фоторецепторных мембранах 10 с для ци-тохромоксидазы это время 10 с. [c.24]

    При виеилних воздействиях на ССЕ (напрнмер, механических) возможен разрыв двойного электрического слоя и изменение баланса зарядов в ССЕ в результате изменения геометрических размеров ССЕ. Плоскость скольжения обычно проходит по диффузному слою, и часть его компонентов переходит в дисперсионную среду. В результате возникает разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя, которую принято называть электрокинетическим (дзета) потенциалом — . Значение -потенциала зависит от отношения hjr ССЕ. При hjr- O - 0, а при /i/r- oo значение -потенцнала увеличивается. Иными словами, значение -потенцнала зависит от внешних возде11-ствий и может ими регулироваться в значительных пределах. [c.159]

    Электрофоретическая подвижность частиц дисперсной фазы определяется величиной -потенциала. В соответствии с уравнением (III. 16) толщина диффузного слоя, а отсюда и -потенциал уменьшаются с ростом концентрации электролита (при постоянной концентрации потен-циалобразующих ионов и постоянных значениях температуры и диэлектрической проницаемости). [c.93]

    Это уравнение основывается на модели, по которой подвижная часть двойного слоя мон ет иметь любое распределение (как слой Гуи), по предполагается движение в среде со средним отношением вязкости Г] к диэлектрической постоянной е. Большинство авторов принимают значения этих параметров, равными параметрам воды. Однако другие считают, что вода в области диффузного двойного слоя имеет аномальные свойства вследствие высокой локальной силы поля. Ликлема и Овербек (1961) заключили, что ё, вероятно, не изменяется, а Г) может увеличиваться, но надежные значения вязкоэлектрической константы для воды отсутствуют. [c.101]

    Возникновение разноименных зарядов в поверхностном слое дисперсных систем приводит к ряду интересных явлений, называем мых электрокпнетнческими. Электрокинетические явления развиты тем сильнее, чем выше подвижной заряд диффузного с.- ] и пропорциональный ему потенциал границы скольже]ШЯ. [c.51]

    Весьма тонкий и надежный метод изменения межплоскост-ных расстояний в решетке монт-мориллонитовых кристаллов с помощью рентгеновского анализа был применен К. Норишем [96]. Однако этим методом не представляется возможным измерить толщины адсорбционных и диффузных слоев жидкости при набухании глинистых минералов как с подвижной кристаллической решеткой, так и с жесткой решеткой, например каолинитов, гидрослюд и др. В ряде технологических процессов (проводка скважин. [c.20]

    Для достаточно разбавленныЗ растворов электролитов, когда толщина диффузного слоя велика, и для малых значений фо-потен-циада можно принять, что этот потенциал довольно близок к -по-тенциалу, измеренному по подвижности частиц в электрическом [c.291]

    Коллоидная частица имеет сложное строение. В центре частицы находится ядро, представляющее собой скопление большого количества молекул или атомов вещества, образующего золь. На поверхности ядра из дисперсионной среды адсорбируются ионы того или иного знака. Совокупность ядра с адсорбированными на поверхности ионами называется коллоидной частицей или гранулой. Обычно адсорбируются главным образом ионы, в составе которых находятся элементы или атомные группировки, имеющиеся в веществе ядра частицы (правило Носкова — Фаянса). Ионы, адсорбирующиеся на поверхности ядра и обусловливающие величину и знак электрического заряда частицы, называются потенциалопре-деляющими ионами. Они образуют так называемый не.подвижный слой ионов. Ионы противоположного знака (противоионы) частично адсорбируются на поверхности ядра частицы (т. е. входят в состав неподвижного слоя), а частично располагаются в жидкости вблизи гранулы (диффузный или подвижный слой ионов). Совокупность гранулы с диффузным облаком противоионов называется мицеллой. [c.165]

    Механизм электроосмотичес сого переноса жидкости можно представить себе следующим образом (рис. 73). При наложении внешнего электрического поля вдоль находящейся в растворе системы капилляров, подвижные ионы диффузного слоя, пере- двигаются к противоположному полюсу. [c.179]

    В центральной части капилляра, вне пределов двойного электрического слоя, числа переноса будут такие же, как и в сво-, бодном растворе без мембраны, так как подвижности и концентрации ионов раствора, наполняющего капилляр в центральной части и в свободном растворе, одинаковы. В цилиндрической оболочке, входящей в двойной слой, вследствие влияния электростатических сил поверхности, подвижности и концентрации находящихся там ионов будут отличаться от свободного раствора и поэтому числа переноса в этом слое будут иные, чем в свободном растворе. Очевидно, что при больших радиусах капилляра объем центральной его части, вне пределов двойного слоя, будет составлять подавляющую часть общего объема капилляра, и поэтому то изменение, которое вносится ионами диффузного слоя, ничтожно, и суммарное значение числа переноса по всему сечению капилляра не изменяется по сравнению со свободным раствором. [c.205]

    Отсюда мы можем непосредственно перейти к рассмотрению механизма движения частицы, взвешенной в жидкости и окруженной двойным электрическим слоем (рис. 77, а) в электрическом поле. При наложении электрического поля распределение ионов в диффузном слое нарушается, и происходит смещение подвижных ионов за пределами границы скольжения между твердым телом и жидкостью, тогда как сама частица с плотным слоем получает импульс в противополол ную сторону (рис. 77, б). [c.127]

    Электрофоретическая подвижность различных частиц имеет вели-чиныпорядка длязолейУэф = (0,4- 0,8) -10 м / (с-В) для эритроцитов животных и,ф = (1,0-=- 1,7) 10 м / (с - В). Экспериментально найденные значения подвижностей часто ока . ываются меньше расчетных. Несовпадение этих величин объясняется в основном тем, что теория Гельмгольца—Смолуховского не учитывает два явления релаксационный эффект и электрофоретическое торможение. Первый из этих эффектов вызывается нарушением симметрии диффузного слоя вокруг частиц. Второй эффект обусловлен добавочным трением электрической природы при движении частиц и противоионов в противоположные стороны. Хюккель ввел в выражение для и ф поправку /з для случая, когда толщина диффузного слоя значительно превышает размер частиц, т. е. для разбавленных систем. [c.407]


Смотреть страницы где упоминается термин Диффузная подвижность: [c.152]    [c.176]    [c.151]    [c.151]    [c.62]    [c.198]    [c.221]    [c.24]    [c.114]    [c.303]    [c.22]    [c.173]    [c.218]    [c.104]    [c.105]    [c.146]    [c.406]    [c.405]   
Физико-химические основы производства радиоэлектронной аппаратуры (1979) -- [ c.140 ]




ПОИСК







© 2025 chem21.info Реклама на сайте