Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярно-кинетические теории прочности

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]


    Согласно молекулярно-кинетической теории [65—67], в зоне контакта полимера с подложкой идет непрерывный процесс образования и разрыва связей. В конечном итоге адгезионная прочность определяется разностью энергий активации процесса разрушения и образования связей (АС/), а также зависит от соотнощения общего числа сегментов, принимающих участие в образовании связей (по) и среднего числа молекулярных связей, приходящихся на единицу площади контакта (п). Для оценки значения А предложена зависимость [65]  [c.24]

    В книге излагаются современная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состояниях с позиций термодинамической и кинетической теорий и микромеханики разрушения. Рассмотрено влияние различных факторов (температура, поверхностно-активные среды, проникающее излучение и молекулярная ориентация) на процессы разрушения. Отражены вопросы прогнозирования прочностных свойств полимерных материалов. [c.239]

    В настоящее время исследования разрушения полимерных изделий развиваются в основном в двух направлениях изучение влияния дефектов на прочность (дефектные теории прочности) и исследование молекулярных процессов при разрушении (молекулярно-кинетические теории прочности). [c.237]

    Таким образом можно считать экспериментально подтвержденными основные концепции молекулярно-кинетической теории прочности. [c.204]

    Этот показатель увеличивается с ростом молекулярной массы. У различных полимеров в зависимости от термодинамической гибкости макромолекул степень свернутости цепей одинаковой длины может быть различной. По мере увеличения жесткости и прочности полимера свернутость цепи убывает. Как уже отмечалось, в реальных полимерах свободное движение звеньев существенно ограничено. Поэтому концы макромолекул зафиксированы в определенных точках, причем всегда Ь>0. В соответствии с кинетической теорией высокоэластической деформации, такие молекулы растягиваются по линии, соединяющей их концы (см. рис. 1.1). Это обстоятельство представляется чрезвычайно важным в проблеме прочности полимеров, у которых тепловые конформационные превращения фактически оказываются источником некоторых спонтанных силовых импульсов, статистически распределенных в объеме материала. Приближенно величина этих импульсов оценивается из [c.11]


    Внутренние силы в конечном счете складываются из сил сцепления и отталкивания, действуЮ1пих между люлекулами, коллоидными и микроскопическими частицами, составляющими тела. Связь этих сил с обычны.ми. механическими силами в большинстве случаев имеет весьма сложный характер. Она выяснена достаточно полно только для наиболее простых и однородных тел. Так мо-лекулярно-кинетическая теория позволяет вычислить давление и внутреннее трение разреженных газов, исходя из величины массы молекул и температуры. Что же касается реальных твердых тел, то теория еще не в состоянии в полной мере связать молекулярно-кинетические свойства с механическими. Это объясняется сложностью строения реальных тел и влиянием ряда факторов, которые не учитываются теорией. Для примера укажем на техническую прочность кристаллов. Она в десятки и сотни раз меньше теоретической. А. Ф. Иоффе [3] показал, что это зависит от образования микротрещин, по которым идет разрушение кристаллов под нагрузкой. Еще меньше воз.можностей для вычисления внутренних механических сил дают молекулярно-кинетические теории аморфных тел и дисперсных систем. В самые последние годы достигнуты некоторые успехи в области теории механических свойств таких тел, но они еще далеки от своего завершения. Пока мы вынуждены ограничиваться лишь частными законо.мерностями, связывающими отдельные механические свойства тел со свойствами их молекул и частиц. Некоторые из этих зависимостей рассмотрены ниже. [c.21]

    Механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложно-напряженном состоянии. Математическая теория трещин позволяет рассчитать напряжения вблизи микротрещин. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетическая концепция исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел. Суть механизма заключается в том, что химические и межмолекулярные связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. Современная термофлуктуационная теория прочности полимеров объединяет оба подхода и вводит понятие о безопасном и критическом напряжении. [c.189]

    Кинетический подход, основателем которого является акад. С. Н. Журков [11.10 61], отличается тем, что основное внимание обращается на атомно-молекулярный процесс разрушения и разрыв тела рассматривается как конечный результат постепенного развития и накопления микроразрушений или как процесс развития микротрещины на молекулярном уровне. Основным фактором в этом подходе является тепловое движение в полимерах. Выяснение природы этого термофлуктуационного процесса разрушения, зависимости скорости процесса и долговечности от температуры, напряжения и других факторов является основой современной физической теории прочности и базой для дальнейшего развития теорий предельного состояния в механике разрушения. Эти подходы будут в дальнейшем рассмотрены подробней. [c.287]

    Молекулярно-кинетическая теория углубляет представление о роли подвижности макромолекул, а также о влиянии на А температуры. Сложный характер влияния температуры на время релаксации и скорость преодоления энергетического барьера приводит в общем случае к немонотонной зависимости адгезионной прочности от температуры [65]. [c.24]

    В основе кинетической теории прочности, развиваемой школой Журкова, лежит термофлуктуационный механизм молекулярного разрушения другими словами, механическое разрушение полимеров рассматривается как термическая деструкция, инициированная, активированная механическим напряжением [116]. [c.297]

    Прочность и долговечность являются важнейшими свойствами полимерных материалов. Прочность реальных материалов не является материальной константой, так как зависит от многих факторов — времени или скорости действия нагрузки, температуры, вида напряженного состояния и др. Можно назвать две основные причины этого. Первая — существование во всех реальных материалах структурных дефектов и прежде всего микротрещин. Вторая — термофлуктуационный механизм разрыва химических связей. Соответственно этому возникли два подхода к прочности твердых тел механический и кинетический. Механический подход имеет свои достоинства и недостатки. Так, механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложнонапряженном состоянии. Математическая теория трещин, позволяющая рассчитывать перенапряжения вблизи микротрещины, является большим достижением механики разрушения. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетический подход исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел, в том числе и для полимеров. Суть этого механизма заключается в том, что химические связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. [c.331]


    Вместе с тем неоправданное преувеличение формализма теории процессов смачивания способно привести к противоречиям в интерпретации экспериментальных данных. Так, казалось бы, вне зависимости от того, является ли тот или иной конкретный полимер адгезивом или субстратом, прочность адгезионных соединений должна быгь носюяиной. Однако результаты измерения сопротивления расслаиванию систем полистирол - поливиниловый спирт показывают, что в случае, когда первый полимер выступает в роли адгезива, по крайней мере в 7 раз выше, чем для системы, в которой он является субстратом [354]. Этот эффект обусловлен, очевидно, молекулярно-кинетическими факторами, в частности различной интенсивностью межфазных диффузионных процессов, определяемой тем, какой из элементов пары находится в твердом состоянии, а какой взаимодействует с субстратом, находясь в жидкой фазе. [c.81]


Смотреть страницы где упоминается термин Молекулярно-кинетические теории прочности: [c.203]    [c.99]    [c.24]    [c.631]    [c.6]    [c.15]    [c.448]    [c.31]   
Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.237 , c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярно-кинетическая теори



© 2025 chem21.info Реклама на сайте