Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы информационные

    Свободная аминокислота активируется соответствующим ферментом. Транспортные РНК осуществляют перенос аминокислоты от фермента к информационным РНК. Информационные и рибосомальные РНК ответственны за синтез макромолекулы белка с заданной последовательностью аминокислот. Для каждой аминокислоты в клетке имеются свои ферменты и свои транспортные РНК. Для транспортной аланиновой РНК в настоящее время Холли полностью определил последовательность нуклеотидов. [c.365]


    Нельзя не упомянуть об открытии рибозимов, т.е. молекул РНК, выступающих в качестве катализатора. Пожалуй, это единственные из известных макромолекул, которые наделены как информационной, так и каталитической функцией. Открытие каталитических РНК поколебало само понятие фермент . Оказалось, что некоторые РНК осуществляют посттранскрипционный процессинг, катализируя самосплайсинг, т.е. участвуют в разрезании и удалении интронов. Наделенные рядом свойств истинных и эффективных катализаторов рибозимы участвуют в двух типах реакций в гидролизе (разрыве) фосфодиэфириой связи и в реакциях трансэтерификации. В качестве субстрата могут служить, помимо собственного, предшественник (про-РНК) и другие молекулы РНК. Сейчас интенсивно изучается третичная структура рибозимов, а первичная и вторичная структуры ряда из них уже расшифрованы. Эти исследования, несомненно, интересные сами по себе, могут пролить свет и на пути развития биологической эволюции. [c.493]

    У большинства животных, не относящихся к млекопитающим, ранний этап развития яйцеклетки сводится главным образом к быстрому клеточному делению, или дроблению, при котором общая масса эмбриона остается, как правило, неизменной. Для такого начала размеры исходного яйца вполне достаточны, и в процессе его дробления образующиеся клетки постепенно становятся все меньше, пока не достигнут обычной величины зрелой соматической клетки. Хотя иа ранних стадиях дробления синтезируются огромные количества ДНК и белков, в это время нет необходимости в синтезе РНК (в транскрипции генов) дробление протекает нормально и в присутствии ядов, ингибирующих синтез РНК, и оно может продолжаться (хотя уже аномальным образом) даже после удаления ядра активированной яйцеклетки. Это объясняется тем, что еще до оплодотворения в яйцеклетках накапливаются огромные резервы информационных РНК, рибосом, транспортных РНК и всех предшественников, необходимых для синтеза макромолекул. Особенно большие запасы питательных веществ требуются тем яйцеклеткам, которые проходят длительный период эмбрионального развития вне родитель- [c.27]

    Информационные молекулы — макромолекулы, несущие информацию в форме специфической последовательности различных строительных блоков к ним относятся, в частности, белки и нуклеиновые кислоты. [c.129]

    Двойная спираль ДНК не только является матрицей воспроизведения самой себя, она также передает информацию, записанную в ее структуре, нуклеотидам, участвующим в синтезе РНК, тем самым предопределяет порядок их расположения в образующейся макромолекуле. Информационная РНК, на каждой цепи которой запечатлена структура молекулы определенного белка, играет ту же роль при образовании полипептидной цепи. В этом случае, однако, процесс осложняется тем, что в и-РНк имеется всего 4 нуклеотидных звена, а в белке — 20 аминокислотных. Поэтому для фиксации положения каждого аминокислотного остатка требуется не меньше трех нуклеотидных. Иначе говоря, химическое строение макромолекулы белка кодируется структурой и-РНК подобно тому, как кодируется текст из 28 букв с помощью азбуки Морзе, содержащей всего два знака. [c.250]


    Такое сопоставление заставляет задуматься. Неужели эволюция сумела создать сахара и не сумела как следует распорядиться их информационной емкостью В течение длительного времени казалось, что действительно не сумела. Однако в последние годы становится ясно, что олигосахаридные остатки на поверхности клеток и макромолекул служат тем сигналом, по которому клетки или макромолекулы различают друг друга. Иначе говоря, эволюция использовала информационные возможности сахаров, и притом наиболее рациональным и экономным способом там, где при помощи минимального числа носителей информации нужно добиться максимального, практически неограниченного разнообразия индивидуальных характеристик. [c.26]

    Физические механизмы точечных мутаций, т. е. нарушений первичной структуры информационных макромолекул ДНК и РНК. [c.221]

    Из шести основных биоэлементов наибольшее значение имеет углерод. Основные структуры живой материи состоят из углеродных каркасов. Характерной особенностью атома углерода является способность образовывать углеродные цепи любого размера и конфигурации. Три из четырех валентностей углерода могут участвовать в образовании трехмерного скелета, а четвертая — связывать ту или иную функциональную группу. Вещества, образованные на основе углерода, называют органическими соединениями. У них есть ряд общих свойств, имеющих большое значение для живой материи. Органические соединения могут иметь огромное число углеродных цепей и функциональных групп, причем отдельные части молекулы способны вращаться вокруг одинарных углеродных связей. Они способны также образовывать трехмерную структуру, играющую первостепенную роль в процессах жизнедеятельности. Число молекул определенного типа в клетке может варьировать в широких пределах. Так, например, информационные макромолекулы представлены в клетках в небольших количествах, в то время как структурообразующие, а также участвую- [c.6]

    Последующая эволюция, по Куну, состояла в возрастании независимости системы от весьма специфического окружения вследствие ее возрастающей сложности. Информационные аспекты возрастания сложности рассмотрены далее ( 17.9). Это происходило опять-таки путем чередования дивергентных и конвергентных фаз. Конвергентная фаза означала уточнение имеющейся организации, дивергентная — перестройку системы и создание новой информации. В результате такой перестройки расширялось жизненное пространство. Ассоциаты увеличивались, проникали в более крупнопористые области. Далее они служили катализаторами (матрицами) для синтеза второго сорта макромолекул (белков), которые создавали компартменты, закупоривая поры в минералах и препятствуя диффузионному разделению матричных молекул. Создавалась обратная связь между полинуклеотидами, ответственными за синтез полипептидов, и этими полипептидами. Возникали мембраны, которые делали систему независимой. Возникал — в качестве побочного продукта эволюционного развития — генетический код. Соответственно появлялись примитивные ферменты. [c.549]

    В действительности, как показал Эйген [13], матрица 5 не беспорядочна. Вигнер не учитывает инструктирующих функций информационных макромолекул. Все рассуждения Вигнера поэтому не имеют отношения к действительности, и вывод о необходимости модификации квантовой механики применительно к биологии оказывается ложным. В то же время применение квантовой механики к макроскопическим системам требует специального рассмотрения. [c.17]

    Ограниченность аналогии макромолекулярной цепи со стохастической марковской цепью во времени проявляется и в самих основах статистики макромолекул. Ее принципиальные особенности были рассмотрены Лифшицем [49]. Макромолекула характеризуется наличием линейной памяти — звенья связаны г, единую цепь и расположены в ней последовательно. Поэтому звенья (частицы статистического ансамбля) принципиально различимы, каждое из них имеет свой номер в цепи и перестановка звеньев требует разрыва химических связей. Линейная память наличествует как в однородной, гомополимерной, цепи, так и в информационной цепи биополимера. Во втором случае память выражается наличием первичной структуры (см. стр. 73). [c.143]

    Вторичные структуры — а-спирали и р-формы реализуются в чистом виде у полиаминокислот, не являющихся информационными макромолекулами. Соответственно эти структуры имеют монотонное периодическое строение. [c.219]

    Книга из издаваемой в Японии серии Современная химия , имеющей целью дать представление о состояний различных областей этой науки в настоящий момент. Данное издание посвящено новой, интенсивно развивающейся области химии высокомолекулярных соединений, изучающей полимеры с функциональными группами. Рассматриваются такие практически важные аспекты, как процессы превращения энергии, в которых участвуют полимеры, массоперенос в полимерных системах, синтез информационных макромолекул. [c.4]

    Нуклеиновые кислоты — информационные макромолекулы, состоящие из мононуклеотидов. В клетках содержится дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновые кислоты (РНК). ДНК — самая большая макромолекула в живых системах. Она состоит из многих тысяч пар нуклеотидов, соединенных друг с другом в определенной последовательности. Молекулы РНК по размеру много меньше, чем ДНК, однако их общее количество превышает ДНК. Для нуклеиновых кислот несвойственно многообразие функций, зато хранение и передача генетической информации является основой размножения и функционирования клеток. [c.9]


Рис. 3-10. Последовательности строительных блоков в информационных и неинформационных макромолекулах. Буквами А, Т, С и С обозначены четыре основания в ДНК-информационной макромолекуле, 0 с-глюкоза, повторяющаяся структурная единица в молекуле целлюлозы, которая не содержит генетической информации. Рис. 3-10. Последовательности <a href="/info/100881">строительных блоков</a> в информационных и неинформационных макромолекулах. Буквами А, Т, С и С обозначены <a href="/info/97328">четыре основания</a> в ДНК-<a href="/info/1382411">информационной макромолекуле</a>, 0 с-глюкоза, повторяющаяся <a href="/info/4393">структурная единица</a> в <a href="/info/490722">молекуле целлюлозы</a>, которая не содержит генетической информации.
    Матрица. Макромолекулярный шаблон для синтеза информационной макромолекулы. [c.1013]

    По-видимому, любая живая клетка содержит сложный набор различных макромолекул РНК с различной химической и биологической специфичностью. Установлено существование нескольких функционально различных типов РНК внутри каждой клетки — рибосомальная РНК, растворимая ( транспортная ) РНК, информационная РНК. Нуклеотидный состав этих РНК различен. [c.651]

    Какой длинный и удивительный путь прошла эволюция динамических систем от макромолекул, способных к репликации, и молекул белков до мозга, располагающего кодами в виде записей уравнений, табличных данных и законов, дающих ему безмерную власть над тем, что управляется примитивными кодами или вовсе не управляется. Будет ли повышение ранга и роли кодов, делающихся все более универсальными и все дальше уходящих от своей изначальной молекулярной основы, происходить по пути повышения информационной нагрузки в выражениях законов или быть может человечество предпочтет создать мыслящие машины , которые возьмут на себя бремя дальнейшего интеллектуального совершенствования Кто знает это Автор, однако, склонен считать движение по первому пути более вероятным просто потому, что этот путь довольно хорошо зарекомендовал себя на протяжении миллиардов лет. [c.237]

    Наличие систем непрерывной регистрации концентрационного распределения С (х) или С (/) информационно дополняет разделение по транспортным свойствам. Встроенные в приборы оптические (и другие) детекторы позволяют в процессе анализа всесторонне исследовать полимерные образцы, транспортные свойства которых различны. Эта особенность транспортных методов превращает их в спектрометрические по широкому ряду характеристик макромолекул (масса, размер, структура, состав, жесткость, проницаемость и т. п.). [c.216]

    На предлагаемой информационной области возможна постановка ряда задач, обусловленных прежде всего неполкотой описания имеющихся семейств генетических макромолекул. [c.41]

    Ферменты локализованы во всех компартментах клеток. Ядерные ферменты катализируют синтез информационных макромолекул, а также процессы их созревания, функционирования и распада. В митохондриях действуют ферменты энергетического обмена, в аппарате Гольджи — ферменты, катализирующие созревание белков, в лизосомах — гидролитические ферменты. Значительное число ферментов ассоциировано с внешней и внутренними мембранами. Так, ферменты, защищающие клетку от действия чужеродных химических веществ, локализованы в эндоплазматическом рети1сулуме. Распределение ферментов в клетках определяют методом дифференциального центрифугирования гомогената тканей. Локализация некоторых ферментов идентифицирована гистохимическими методами in situ. Для этого при помощи микротома получают срезы ткани и обрабатывают их раствором субстрата. Идентификация продуктов ферментативной реакции облегчена, если последние окрашены. [c.65]

    Биологические макромолекулы — белки и нуклеиновые кислоты — очень сложны. Их свойства в живых системах определяются всеми особенностями строения, в частности, тем, что эти макромолекулы являются информационными, они представляют собой тексты . Важно установить, что в поведении биополимеров связано с самим фактом их цепочечного строения, независимо от мнкретных атомных групп, входящих в состав макромолекулы. Простые неипформационные цепи синтетических полимеров служат моделями для исследования этой проблемы. [c.59]

    Молекулярная биология исследует молекулярную природу основных явлений жизни, прежде всего наследственности и изменчивости. Эти явления определяются строением и свойствами нуклеиновых кислот — информационных макромолекул. Становление молекулярной биологии связано с открытием генетической роли нуклеиновых кислот и с ее расшифровкой. Гены, т. е. фрагменты молекул ДНК и РНК, программируют синтез белков. Эти молекулы являются законодательными , а белки — исполнительными . Молекулярная биология началась с открытия трансформации бактерий посредством ДНК (Эвери, Мак-Леод, Мак-Карти, 1944). Молекулярная биология ищет объяснение биологических явлений в химии и молекулярной физике. Она изучает широкую совокупность жизненных процессов, в том числе ферментативный катализ, мембранный транспорт, механохимические явления и т. д. В отличие от классической биохимии, молекулярная биология объединяется с физикой и ее специфика состоит именно в физических аспектах исследований и задач. [c.220]

    Вопрос о способе возникновения первичной структуры белковой цепи в процессе матричного синтеза, идущего с необходимым участием других информационных макромолекул (молекул нуклеиновых кислот), представляет собой сложную физическую гфоблему. В связи с этим возникает физическая проблема генетического кода. Представление о генетическом коде исходит из предположения о существовании специфического молекулярного механизма превращения генетической информации в структурную функциональность белковых молекул. Это предположение имеет физический характер. [c.178]

    Макромолекулы, такие, как белки, полисахариды и нуклеиновые кислоты, внутри своих индивидуальных групп отличаются по физико-химическим свойствам лишь незначительно поэтому их выделение, основанное на различиях в этих свойствах, например, с помошью ионообменной хроматографии, гель-фильтрации или электрофореза сопряжено с известными трудностями и требует много времени. Вследствие этого в ходе выделения существенно падает их активность из-за денатурации, расщепления, ферментативного гидролиза и т. п. Одним из наиболее характерных свойств этих биологических макромолекул является их способность обратимо связывать другие вещества. Например, ферменты образуют комплексы с субстратами или ингибиторами, антитела— с антигенами (против которых получены), а нуклеиновые кислоты, такие, как информационная РНК, гибридизуются с комплементарными ДНК и т. д. Образование специфических диссоциирующих комплексов биологических макромолекул служит основой метода их очистки, известного как аффинная хроматография. [c.9]

    Мы уже убедились (см. гл. 1), что, хотя в живых организмах содержится множество различных белков и нуклеиновых кислот, построение этих сложных структур основано на весьма простых принципах. В качестве строительных блоков, из которых состоят все белки и нуклеиновые кислоты, используются простые молекулы число этих молекул невелико, и они имеют одно и то же строение у всех видов организмов. Молекулы всех белков, представляющие собой длинные цепи, построены всего из 20 разных аминокислот, расположенных в той или иной линейной последовательности. Аналогичным образом длинные, напоминающие цепи молекулы нуклеиновых кислот у всех организмов построены из небольшого числа нуклеотидов, образующих различные последовательности. Белки и нуклеиновые кислоты являются информационными макромолекулами каждый беяок и каждая нуклеиновая кислота несут определенную информацию, закодированную в последовательности строительных блоков. [c.67]

    Расположение азотистых оснований в ДНК служит кодом, определяющим последовательность аминокислот в различных белках. Строительство белков осуществляется с помощью третьей макромолекулы, в которой отпечатывается (считывается) информация, закодированная в ДНК. Эта молекула называется информационной или матричной рибонуклеиновой кислотой (мРНК). В точке репликации двойная цепь расплетается и начинается считывание кода с образованием РНК. Для построения РНК используются те же азотистые основания, что и для ДНК, т.е. аденин (А), цитозин (С) и гуанин (О), но тимин (Т) заменен урацилом (и). Это несущий информацию мостик между геном ДНК и нужным белком. Каждая аминокислота кодируется тремя нуклеотидами. Например, последовательность ССО означает аминокислоту пролин, а САУ в генетическом словаре соответствует гистидину. [c.116]

    Каковы происхождение и судьба митохондрий На эти вопросы ответить очень трудно. Существует целый ряд различных теорий относительно происхождения митохондрий. Однако ни одна из них не была подтверждена экспериментально. Недавно Гибор и Граник [36] предложили теорию, согласно которой митохондрии представляют собой самовоспроизводящиеся цитоплазматические тельца, размножение которых подчиняется контролю со стороны ядра лишь частично или вообще не контролируется ядром иначе говоря, в митохондриях должны содержаться информационные макромолекулы. Действительно, во многих митохондриях найдена рибонуклеиновая кислота (РНК), а на электронных микрофотографиях митохондрий обнаруживаются. нити дезоксирибонуклеиновой кислоты (ДНК) [71]. ДНК была выделена из митохондрий нейроспоры [64]. При изучении митохондриальной ДНК маша и турнепса оказалось, что она существенно отличается от ядерной ДНК (Суйяма, Боннер мл., неопубликованные данные). В свете этих данных совершенно очевидно, что изучение генетики митохондрий становится поистине насущной проблемой. Чрезвычайно волнующей представляется вполне, по-видимому, реальная перспектива разработки метода культивирования митохондрий в стерильных условиях. Интересные наблюдения и концепции, связанные с вопросом о происхождении митохондрий, имеются в работах Слонимского и др. [84], а также Чанса и Эста-брука [17]. [c.57]


Смотреть страницы где упоминается термин Макромолекулы информационные: [c.47]    [c.536]    [c.118]    [c.145]    [c.76]    [c.15]    [c.62]    [c.165]    [c.224]    [c.259]    [c.292]    [c.292]    [c.294]    [c.294]    [c.295]    [c.162]    [c.307]   
Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.0 ]

Эволюция без отбора (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Информационная РНК



© 2025 chem21.info Реклама на сайте