Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экосистемы водные

    Преимуществом вольтамперометрии применительно к анапизу природных объектов является то, что она позволяет наряду с определением концентрации идентифицировать и форму нахождения ионов в воде. Дифференциация форм существования элементов в водных экосистемах и их количественное определение являются важной задачей. Их идентификация и количественное определение позволяют оценить качество воды, тем более, что между содержанием химических элементов в природной воде и ее токсичностью не существует однозначных связей [67]. Токсич- [c.278]


    Некоторые авторы [143,144] считают рыб хорошим индикатором зафязнения водных экосистем. Так, анализ содержания ДДТ в балтийской салаке показал, что хлорированные углеводороды прочно вошли в состав всех звеньев экосистемы Балтийского моря, хотя в отличие от Северного моря такие токсичные пестициды, как альдрин и дильдрин, в организмах рыб обнаружены не были. Несмотря на то, что концентрация ХОП в морской воде в последнее время стабилизировалась, а содержание ДДТ даже уменьшилось, обнаружение в рыбах высоких концентраций хлорорганических соединений свидетельствует об их концентрировании в биоте. [c.83]

    Одним из аспектов функционирования Волжской водохозяйственной системы является выполнение ею канализационных функций, что обусловливает ухудшение качества природных вод. Изменятся химический состав вод, деградируют экосистемы водных объектов и прилегаю-ш,их территорий. Основной причиной ухудшения качества природных вод является превышение предельных нагрузок массами ЗВ, сбрасываемыми в водные объекты (предельными называются такие нагрузки, при которых химические и биологические качества водной среды еще соответствуют требованиям водопользователей и окружающей территории). [c.345]

    Кроме того существуют санитарно-гигиенические и рыбохозяйственные нормативы. В большинстве случаев последние оказываются более жесткими. Они гарантируют сохранность, в пределах естественной изменчивости, основных параметров среды, определяющих структурную и функциональную целостность экосистемы водного объекта. В табл. 10.1 приведены систематизированные данные по экологической оценке отдельных представителей веществ или смесевых препаратов, применяемых в качестве ингибиторов. Как показывают табличные данные, из простых ингибиторов силикаты имеют наиболее высокое значение ПДК и, следовательно, они наименее токсичны. Фосфаты и нитриты более опасны. Очень высокой токсичностью обладают аминопроизводные ингибиторы коррозии. Это относится как к простым веществам (гидразин, табл. 10.1, №3), так и к сложным смесевым препаратам (ИКБ-2-2 и ИКБ-6-2, табл. 10.1, №9 и №10). [c.310]

    Для построения пирамиды чисел надо сначала подсчитать особей разных видов в определенном местообитании, а затем постараться распределить эти виды по трофическим уровням. Обычно в результате получается постепенное убывание численности организмов каждого трофического уровня при переходе от низшего уровня к высшему. Количество особей на разных уровнях изображают в виде лежащих друг на друге прямоугольников, длина которых пропорциональна числу организмов на единице площади местообитания или в единице объема (если экосистема водная). Идеализированная пирамида чисел приведена на рис. 10.6, А. [c.392]


    Толерантность экосистемы водного объекта [c.228]

    В последнее время появились работы, указывающие на негативное влияние буровых сточных вод на почвенные и водные объекты. При этом установлено, что при сбросе БСВ на почвогрунты наблюдаются сдвиги в физико-химических свойствах почвы. Такое негативное влияние БСВ вызывает снижение численности различных групп организмов как в естественных экосистемах (леса, пастбища), так и агроценозах (пашни). В то же время, исходя из состава БСВ, которые содержат практически весь спектр загрязнителей, присутствующих в ОБР, можно предположить, что характер их отрицательного действия аналогичен другим видам отходов бурения. [c.79]

    Вероятностно-статистическим анализом размерных спектров показано, что в водных экосистемах функционал / (а, Ь, г) — пуассоновский [5]. Тогда уравнение (2.3) примет вид  [c.57]

    В условиях свободного доступа кислорода, под влиянием фотохимического действия света, деградация загрязнений протекает в результате автокаталитических процессов по механизму цепных свободно-радикальных реакций. Эти процессы сопровождаются расходованием кислорода, в связи с чем экологами используются параметры ХПК и БПК — соответственно химическое и биологическое потребление кислорода. При больших значениях этих параметров для конкретного загрязнения процесс разложения может привести к дефициту кислорода в экосистеме и негативным последствиям типа эвтрофикации водоемов ( цветение , чрезмерное размножение водной растительности вследствие избытка углекислоты). [c.80]

    За более чем полувековую историю диоксинов накоплен большой объем информации об их физико-химических свойствах (табл 2.6) и токсичности 116,29,78-83]. Были опубликованы данные о распределении и бионакоплении диоксинов и дибензофуранов в водных экосистемах, миграции и устойчивости в почве, разложении в природных условиях и при различных воздействиях, об образовании в процессах горения. Оценки баланса поступления хлорированных диоксинов и дибензофуранов в окружающую среду показывают, что в течение года глобальная эмиссия ПХДД и ПХДФ составляет около 5000 кг [84]. [c.70]

    Свинец в водных экосистемах находится в основном в виде соединений Особенности его нахождения в природных водах и миграции объясняются тем, что он сравнительно легко вступает в реакции с присутствующими в воде примесями, образуя малорастворимые соединения. Поэтому концентрация свинца в воде весьма невелика и, как правило, не превышает 10 мкг/л [198]. Как и для других металлов важную роль в миграции свинца в пресных водах играют взвешенные формы, причем во многих объектах они составляют от 90 до 98%. Содержание свинца в поверхностных водоемах зависит также от их удаления от промышленных предприятий. Исследования показали, что водные источники вблизи руд- [c.106]

    Поведение тяжелых металлов в водной среде. В водные экосистемы атомы тяжелых металлов поступают из почв и горных пород в результате химического и микробиологического выщелачивания минералов (разд. 1.3), с паводковыми и дождевыми водами, а также при осаждении из атмосферы пылевых частиц и аэрозолей, вовлеченных в воздушный перенос. Значительный вклад в загрязнение вод вносит деятельность человека. Антропогенными источниками соединений тяжелых металлов для вод- [c.248]

    Наиболее важными химическими процессами являются окисление, восстановление, гидролиз и комплексообразование. В окислении и восстановлении лидирующую роль в водных экосистемах обычно играют энзиматические реакции в клетках микроорганизмов, принадлежащих к различным таксономическим группам. [c.249]

    В почвах и водных экосистемах происходит довольно быстрая нитрификация - окисление ионов аммония с образованием более доступных растениям нитритных и нитратных ионов  [c.63]

    Таким образом, в почвах и водных экосистемах происходят многообразные превращения соединений серы, среди которых [c.67]

    Экологические последствия прогрессирующего закисления водоемов заключаются в постепенном уменьшении численности популяций гидробионтов вплоть до полного исчезновения многих видов, часто сопровождаемом распространением немногочисленных устойчивых по отношению к повышенному содержанию кислот организмов - некоторых насекомых (например, стрекоз), нитчатых водорослей и водных мхов. Как правило, нарушения наблюдаются на всех уровнях экосистемы - от микробных сообществ и первичных продуцентов до организмов конечных звеньев трофической цепочки (хищные рыбы и питающиеся рыбой птицы). [c.220]

    Таким образом, максимально возможное содержание мобильных форм Sr пришлось на конец 1980-х гг., и сейчас их доля уменьшается. Следовательно, уменьшается поступление этого радионуклида в растения и водные экосистемы. Кроме того, из модели следует, что максимальное содержание мобильных форм [c.273]

    Природные экосистемы в ходе эволюции постоянно сталкиваются с такими загрязнителями, как нефтяные углеводороды. Несмотря на это, до начала XX века не наблюдалось глобальной деградации природных систем под действием этих загрязнений. Выведение из системы этих поллютантов строилось на их сорбции естественными сорбционными материалами и переведением их, например, из водной фазы в осадок, где они и подвергались дальнейшей эволюции под влиянием многочисленных видов бактерий, находящихся в данной экосистеме. Эти и некоторые другие особенности природных процессов самоочищения легли в основу технологий, упомянутых в данном разделе. [c.190]


    Биомониторинг водного бассейна, атмосферы и почвы выявляет необходимость принятия первоочередных мер по оздоровлению экосистемы и наличие опасных по загрязненности территорий внутри и вне предприятий по переработке углеводородных систем. [c.318]

    Бассейн озера Байкал. Байкал — уникальное пресноводное озеро, занимающее первое место в мире по глубине и объему водных масс. В нем содержится около 20 % мировых и свыше 80 % объема пресных вод страны. Экосистема Байкала отличается удивительным богатством и своеобразием — в озере обитает не менее 2400 видов и разновидностей животных и растений. Его уникальной особенностью является наличие тонкого биологического механизма самоочищения вод. [c.274]

    Сорбция тяжелых металлов донными отложениями з ависит от особенностей их состава и содержания органических веществ. В частности, 5-10% свинца в донных отложениях связано с органическими веществами, особенно с гуминовыми кислотами. При этом серьезную опасность для биоты представляет превращение неорганических соединений свинца в органические типа (СНз)зРЬ и (СНз)4РЬ. Интенсивность сорбции ртути донными отложениями также зависит от содержания в них органических соединений. Следует отметить, что в конечном итоге тяже-ные металлы в водных экосистемах концентрируются в придонных осадках и в биоте, тогда как в самой воде они остаются в сравнительно небольших концентрациях. Так, при концентрации ртути в донных отложениях 80-800 мкг/кг ее содержание в воде не превьппает 0,1-3,6 мкг/л. По имеющимся на сегодняшний день данным, планктон концентрирует свинец в 12 ООО раз, кобальт - в 16 ООО раз, медь - в 90 ООО раз. [c.107]

    Основным международным механизмом охраны ценных водно-болотных экосистем является Конвенция о водно-болотных угодьях, имеющих международное значение главным образом в качестве мест обитания водоплавающих птиц. Конвенция подписана 2 февраля 1971 г. в г. Рамсар (Иран) и с тех пор носит название Рамсарской. Понятие о ВБУ, принятое Конвенцией, объединяет морские мелководные, устьевые, речные и болотные экосистемы. Водно-болотные угодья являются ценными местообитаниями водоплавающих птиц и других животных, выполняют важнейшие функции регулирования гидрологического режима и климата обширных территорий, служат ресурсами чистой воды и пищи для местного населения. [c.8]

    Ниже мы рассмотрим закономерности биохимической кинетики применительно к моделированию процессов биологической очистки сточных вод и разработке моделей трансформации органических веществ в водных экосистемах. Принципы моделирования и расчета биохимических реакторов изложены в [54]. Биохимический процесс окисления кислородом органических веществ в сточных водах осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антогонизма). [c.146]

    Важнейшие минеральные соединения фосфора - апатиты. При вьшет-ривании кристаллы апатитов попадают в почву, разлагаются почвеппыми кислотами и корневыми выделениями растений. Далее фосфор усваивается растениями в форме растворённых фосфат-ионов (РОд ) и таким образом вовлекается в биохимический круговорот. Затем он переходит по пищевой цепи к животным. Вследствие минерализации продуктов жизнедеятельности и органических остатков растений и животных фосфор возвращается в ночву, где с помощью фосфатредуцирующих бактерий фосфор органических веществ переводится снова в минеральные соединения. В водных экосистемах фосфор переходит от фитопланктона к рыбам, а далее - к морским птицам, возвращающим его на сушу в виде экскрементов (гуано). [c.23]

    Таким образом, по реакции апьгоценозов можно оценивать антропогенное воздействие и на наземные, и на водные экосистемы. [c.93]

    В невозмущенной человеком биосфере азотфиксация и нитрификация в масштабах планеты почти полностью уравновешиваются противоположным процессом, называемым денитрифи кацией. Образование молекулярного азота из органических соединений, нитратов и нитритов происходит в почвах и водных экосистемах в аэробных и анаэробных условиях. Денитрификация не всегда приводит к выделению молекул N2. Она может завершаться также образованием оксидов азота. Например, в анаэробном окружении многие микроорганизмы используют нитраты и нитриты в качестве источника энергии и акцептора электронов при дыхании  [c.63]

    Не меньшую роль играет воздействие человека на биоту планеты - главное деятельное начало глобальной системы, определяющее ее "метаболизм". По некоторым оценкам под влиянием хозяйственной деятельности биомасса природной растительности континентов уменьшилась на 25 %. При нынешнем уровне знаний весьма трудно или даже вообще невозможно корректно оценить антропогенно обусловленные потери биомассы сообществ организмов, входящих в водные и почвенные экосистемы. Ясно одно они неизбежно будут возрастать с ростом народонаселения планеты. [c.243]

    Как правило, в воде концентрация диоксинов ниже предела их обнаружения. Большинство ПХДД и ПХДФ, присутствующих в водных экосистемах, находится в донных отложениях или сорбировано на частицах 126 [c.126]

    Концентрация бенз(а)пирена в верхних слоях пресноводных донных отложений сильно зависит от близости водоемов к индустриальньш центрам и объемов сжигания топлива, а также от интенсивносги транспортного движения, причем 2/3 бенз(а)пирена в водных экосистемах находится в сорбированном состоянии на взвешенных частицах. Последние играют основную роль в процессах транспорта бенз(а)пирена в воде и его накопления в донных отложениях. [c.128]

    Процедуры и техника отбора проб природных и поверхностных вод при определении суперэкотоксикантов существенно не отличаются от описанных в литературе для других загрязнителей [51]. Вследствие низкого содержания суперэкотоксикантов в воде для их определения необходима стадия предварительного концентрирования, которую зачастую совмещают со стадией пробоотбора. Иногда вместо отбора отдельных проб можно использовать принцип непрерывного пробоотбора. Хотя во всех случаях во внимание следует принимать возможность изменения состава проб при хранении, основная проблема заключается в отборе тгисой пробы, которая отража.па бы загрязнение водной экосистемы. На состав пробы могут влиять глубина и расположение места ее отбора, температура воды, характер течения и многие другие факторы, которые необходимо учитывать [c.182]

    Донные отложения отбирают для определения характера, степени и глубины проникновения суперэкотоксикантов в них, изучения закономерностей процессов самоочищения, выявления источников вторичного зафязнения и учета воздействия антропогенного фактора на водные экосистемы (831 Проба должна характеризовать водный объект или его часть за определенный промежуток времени. В водоемах и реках точки отбора проб выбирают с учетом распределения донных отложений и их перемещения. В частности, отбор проб обязателен в местах максимального накопления донных отложении (места сброса сточных вод и впадения боковых притоков, приплотинные участки водохранилищ), а также в местах, где обмен зафязняющими веществами между водой и донными отложениями наиболее интенсивен (судоходные фарватеры рек, перекаты, участки ветровых волнений и др.). При оценке влияния сточных вод на степень зафязненности донных отложений и динамики накопления зафязняющих веществ пробы отбирают выше и ниже мест сброса в характерные фазы гидрологических режимов водных объектов [c.191]

    Одним из путей борьбы с разливами нефти и нефтепродуктов является обработка труднодоступных водных поверхностей, расположенных, например, в болотистой местности, твердыми веществами, обеспечивающими осаждение продукта на дно водоема [23]. Подобное физическое осаждение продукта не приводит к очистке экосистемы от загрязнения, а лишь локализует разлив. Однако притапливание значительной части органических загрязнителей с поверхности зеркала воды позволяет улучшить кислородный баланс в объеме воды и способствует естественному или принудительному процессу биоочищения воды. Следует сразу отметить, что применение физического осаждения мы считаем целесообразным лишь при ликвидации разливов на труднодоступной местности (болота, ручьи, мелкие реки, бездорожье и др.), когда нет возможности использовать более эффективную альтернативную физико-химическую обработку разлива. [c.54]

    В зависимости от влажности воздуха и др. условий ЗО присутствует в ат.мосфсре от неск. часов до неск. дней. Кол-ва 80з и 80д неодинаковы по высоте на небольших высотах кол-во 8О2 больше соотношение 802/80 уменьшается с высотой. Переносу на дальние расстояния ЗО и его рассеиванию в верх, слоях атмосферы способствует стр-во высоких дымовых тр>б. Однако при этом увеличивается время пребывания серосодержащих соед. в воздушной среде и, следовательно, степень превращения 80 в Н ЗО и сульфаты. Содержащие их кислотные осадки (дождь, град, снег и др.) в районах, где онн выпадают, оказывают отрицат. воздействие на водные экосистемы, на рост деревьев и с.-х. культур. Влияние таких осадков на живые организму, в т. ч. на человека, еще недостаточно исследовано. [c.431]

    Еще одна важная форма миграции ряда тяжелых металлов -элементорганическая. В результате ряда химических и микробиологических процессов ртуть, свинец, олово, сурьма, а также мышьяк и селен в водных экосистемах подвергаются полному или частичному метилированию (Исидоров, 1999). В частности, двухвалентные ионы ртути превращаются в ионы метилртути СНдНе и в гидрофобную и летучую диметилртуть ( Hз)2Hg. Из-за способности легко преодолевать различные физиологические барьеры (плацентарный, гемато-энцефалический и другие гисто-гематические барьеры), эти формы ртути наиболее опасны для животных. [c.251]

    Большой интерес представляет поведение в почвах и водных экосистемах основных дозообразующих и относительно долгоживущих радионуклидов - Sr и а также изотопов плутония. В водной фазе почв, загрязненных выбросами из 4-го энергоблока, эти изотопы появляются в результате выщелачивания горячих частиц , состоящих в основном из топливного диоксида урана. Сам по себе UOj отличается высокой химической стабильностью по отношению к воде, но тем не менее под действием почвенных растворов частицы микронных размеров довольно быстро разрушаются и высвобождают продукты деления и активации. Если летом 1986 г. из проб грунта в 30-километровой зоне ЧАЭС почти не происходило выщелачивание урана при их обработке 6 н. раствором HNOj и 10 %-м раствором Naj Oa, то в 1991 г. в этом же районе практически весь топливный уран был в водорастворимой форме. [c.272]

    ЭкоД использует результаты многолетних исследований космических и внутриземных процессов, воздушной и водной сред, состояния флоры и фауны с целью определения благоприятных для экосистемы состояний природной среды и построения диагностических моделей экосистемы. Построение алгоритмов диагностирования заключается в выборе такой последовательности элементарных проверок, по результатам которых можно отличить благоприятное состояние природной среды от контролируемого, угрожающего необратимыми неблагоприятными для экосистемы изменениями или жизни и здоровья человека. [c.613]

    Анализ приведенного списка показывает, что около 60 % приоритетных загрязняющих компонентов относится к хлор- и бромсодержащим соединениям. Это связано с тем, что галогенсодержащие органические соединения отличаются высокой персистентностью и липофильностью. Вследствие этого происходит их накопление в водных экосистемах, биоаккумулирование и экологическая магнификация. [c.285]

    Несмотря на остроту проблемы загрязнения поверхностных вод химическими соединениями-токсикантами, основную угрозу для водных экосистем несет все же антропогенное эвтрофирова-ние. Особенно отчетливо это проявляется в случае озер. Для них обычно выделяют пять трофических состояний ультраолиго-трофное, олиготрофное, мезотрофное, эвтрофное и гипертрофное. В этой последовательности отражается увеличение содержания в экосистеме биогенных элементов и повышение биопродуктивности. Даже естественное эвтрофирование со временем неизбежно приводит к гибели водоема. Однако этот процесс может занимать десятки тысяч лет и более. Переход с одного трофического уровня на другой в естественных условиях обычно растягивается на многие столетия. Хозяйственная деятельность резко ускоряет процесс, и в таких крупных озерах, как Ладожское Эри и Тахо, этот переход произошел всего лишь за 20-25 лет (Фру-мин и соавт., 1994). [c.287]

    Избыточное поступление в водные экосистемы доступного для ассимиляции фосфора отчасти связано с увеличивающимся использованием искусственных удобрений. Однако роль растениеводства в загрязнении вод этим элементом не слишком велика. Объясняется это малой подвижностью фосфора в почвах и почвенных растворах, поскольку содержащие группы РО , HPOf и Н2РО4 соединения плохо растворимы в воде. Внесенный в почву фосфор быстро связывается с образованием нерастворимых соединений и редко мигрирует от гранул удобрений на расстояние более чем несколько сантиметров. Главными доступными для водных растений формами этого элемента во многих густонаселенных регионах стали сейчас полифосфатные ионы, например трифосфаты (Р3О10). Соли щелочных металлов и полифосфорных кислот входят в состав синтетических моющих средств в качестве связующих и средообразующих компонентов. Поэтому они в больших количествах сбрасываются в реки и водоемы со сточными водами. К сожалению, попытки замены полифосфатов другими соединениями до сих пор не увенчались успехом. [c.287]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Таким образом, существующие ПДК, разработанные санитарно-гигиенической службой, далеко не полностью офажают влияние чужеродных веществ на водные экосистемы. Необходима разработка экологических ПДК и оценка состояния природных вод не только по [c.201]

    Поведение ртути и других тяжелых металлов в экосистемах Аналит. обзор / Подг. А.Н. Лебедева и др. (Экология / АН СССР. Сиб. отд. ин-та водных и экологических систем ГПНТБ СО АН СССР). Ч. 2 Процессы биоаккумуляции и экотоксикологии. Новосибирск, 1989. [c.521]

    Самая большая экосистема — планета Земля. В пределах планеты можно вьщелить несколько экосистем разной степени организации. Биосфера — та часть Земли, в которой обитают и размножаются живые организмы. В биосферу входит часть твердой оболочки Земли (литосферы), водной оболочки (гидросферы) и газовой оболочки (атмосферы). Специфической средой жизни являются сами живые организмы, каждый из которых представляет целый мир для населяющих его существ. [c.14]

    В среднем 1 м недостаточно очищенных сточных вод промышленного производства делает непригодными к использованию 10—50 м воды поверхности источников. Мировое потребление воды в настоящее время составило -7000 км . Если сбрасывать образующиеся сточные воды в водоёмы, то практичесБМ весь наземный и подземный речной сток окажется загрязнённым. Важно отметить, что приведённые экосистемы не подготовлены к переработке и биохимическому разложению поступающих в огромных количествах веществ техногенного происхождения, хотя такие загрязнения, как опавшие листья, взвешенные вещества, приносимые во время бурных паводков, отмирающая водная растительность, довольно быстро биологически разлагаются и всегда присутствуют как нормальные компоненты экосистемы. [c.185]


Библиография для Экосистемы водные: [c.300]   
Смотреть страницы где упоминается термин Экосистемы водные: [c.228]    [c.57]    [c.16]    [c.81]    [c.137]    [c.88]   
Загрязнение воздушной среды (1979) -- [ c.164 ]

Загрязнение воздушной среды (копия) (1979) -- [ c.164 ]




ПОИСК







© 2024 chem21.info Реклама на сайте