Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фотосистеме

    Вспомним теперь материал гл. 11, где говорилось, что в цикле Кальвина для превращения СОг в сахар необходимы как NADPH, так и АТР. Насколько нам известно, стехиометрия реакции определяется урав-лением (11-16). Помимо двух молекул NADPH, требуемых для восстановления одной молекулы СОг, нужны еще три молекулы АТР. Уместно спросить, откуда же они берутся. Z-схема дает на это простой ответ. Падение потенциала в цепи переноса электронов, соединяющей верхний конец фотосистемы II с нижним концом фотосистемы I, вполне достаточно для синтеза АТР в результате переноса электронов. По всей вероятности, на каждую пару электронов, проходящих по этой цепи переносчиков, синтезируется только одна молекула АТР. Поскольку, согласно стехиометрии уравнения (11-16), на каждую молекулу NADPH приходится Р/г молекулы АТР, должен существовать еще ка-кой-то механизм синтеза АТР. Кроме того, в хлоропластах, несомненно, протекает и множество других АТР-зависимых процессов, так что реальные потребности в АТР, генерируемом в ходе фотосинтеза, могут быть значительно выше. [c.39]


    В химическом отношении фотосинтезирующие единицы были охарактеризованы исходя из числа разного рода молекул, находящихся в мембране хлоропласта и приходящихся на пару атомов марганца (табл. 13-2). Каждая такая единица предположительно содержит один реакционный центр фотосистемы I и один реакционный центр фотосистемы II. [c.46]

    Сообщалось об определенном успехе, достигнутом заменой рутениевого сенсибилизатора металлопорфиринами, которые имеют преимущество с точки зрения коммерческой эксплуатации. Особенно многообещающим представляется водорастворимый цинк-порфирин, дающий квантовый выход выделения Ог до 0,5. Еще большим успехом, чем даже производство кислорода, явилось бы соединение восстановительной и окислительной систем так, чтобы не требовались расходуемые соединения. Следует напомнить, что природный фотосинтетический процесс (разд. 8.3) достигает такого сопряжения путем использования общей окислительно-восстановительной цепи, действующей между двумя фотосистемами. Попытки моделирования этих процессов в лабораторных условиях обычно терпят неудачу из-за необходимости обеспечить кинетическую избирательность между желаемой прямой реакцией и конкурирующей обратной реакцией. Среди предложений по преодолению этих трудностей есть такие, которые включают упорядоченные структуры типа мицелл, созданных из сотен молекул поверхностно-активных веществ, и разделение двух реакций в пространстве, например с помощью мембран, пропускающих частицы не крупнее электронов и протонов. [c.271]

    Белок фотосистемы I, содержащий железо и серу [c.241]

    Как видно из рис. 8.9, максимум длинноволнового спектра поглощения хлорофилла в хлоропластах сдвинут в красную область по сравнению с максимумом хлорофилла в растворе. Этот эффект частично может быть объяснен комплексообразо-ванием молекул хлорофилла с белками. При более детальном изучении спектров поглощения хлоропластов удается различить по крайней мере две спектральные формы хлорофилла, которые, возможно, обусловлены комплексообразованием хлорофилла а с различными белками или мономерами и димерами хлорофилла. Эти две спектральные формы хлорофилла приписывают пигментным системам I и II, или фотосистемам I и II (ФС I и ФСП), фотохимические реакционные центры которых имеют характерные полосы поглощения с максимумами при700 и 680 нм соответственно (обозначаются как Р оо и Резо). Возможно, более коротковолновый спектр поглощения ФС II по сравнению со спектром ФС I связан с наличием вспомогательных пигментов (например, хлорофилла Ь у зеленых растений). Однако флуоресцентные исследования показывают, что энергия [c.233]

    Как показали Арнон и др. [79f], дополнительное количество АТР может синтезироваться в хлоропластах в результате циклического фо-тофосфорилирования электроны, находящиеся на вершине фотосистемы I, возвращаются в цикл, замыкаемый указанной на рис. 13-18 штриховой стрелкой. Для синтеза АТР используется система переноса электронов, которая либо связана с цепью переноса Z-схемы, либо является независимой. Фактически Арнон и др. считали, что в хлоропластах имеются три фотосистемы фотосистема I участвует в циклическом фотофосфорилированип, а фотосистема II состоит из двух частей, являющихся компонентами Z-схемы [80]. [c.39]


    Обесцвечивание бактериохлорофилла сопровождается появлением сигнала ЭПР со значением g =l,82 по-видимому, это обусловлено восстановлением первичного акцептора, возможно негемового железа [96]. Судя по другим данным, акцептором является хинон [97] (или убихи-нон в Rhodopseudotnonas). Соответствующей модельной реакцией служит фотовосстановление бензохинона при обесцвечивании хлорофилла, происходящее в спиртовом растворе [98]. Первичным акцептором в-фотосистеме I хлоропластов, по-видимому, является особый Ре-З-белок [99.  [c.47]

    На основании спектроскопических и электрохимических свойств моно- и биядерных комплексов получены оценки редокс потенциа юв комплексов в низшем электронно-возбужденном состоянии и термодинамические параметры внутри- и внешне-сферных фотостимулированных процессов переноса энергии и мектрона. Показано, что различная природа низших свободных спектроскопических и редокс орбиталей в [Р1(1ру)С1(В1)] комплексах, а также слабое взаимодействие металлокомплексных фрагментов в биядерных системах на их основе определяет перспективность использования их в фотосистемах с пространственным разделением зарядов. [c.57]

    Различие между фотосинтезирующими бактериями и зелеными растениями стало еще более очевидным после экспериментов Р. Эмерсона и его сотрудников [79Ь], выполненных в 1956 г. Было известно, что свет с длиной волны 650 нм намного более эффективен, чем свет с длиной волны 680 нм. Однако Эмерсон и др. показали, что сочетание света этих двух длин волн дает более высокую скорость фотосинтеза, чем свет с каждой из указанных длин волн по отдельности. Это позволило предположить, что существуют две разные фотосистемы. Фотосистема, известная теперь как фотосистема I, активируется далеким красным светом (- 700 нм), тогда как фотосистема II — красным светом с более высокой энергией (- 650 нм). Это положение подтверждается множеством разных фактов. Еще в 1937 г. Хилл [79с] показал, что фотосинтетическое образование О2 может идти с использованием мягких окислителей, таких, как феррицианид и бензохинон, а Г. Гаф-фрон [79(1] обнаружил, что некоторые зеленые водоросли способны вести фотоокисление Нг до протонов [уравнение (13-25)], используя электроны для восстановления МАОР. Таким образом, фотосистема I может быть отделена от фотосистемы П. [c.37]

    Был найден мощный гербицид, дихлорофенилдиметилмочевина, блокирующий перенос электронов между этими двумя фотосистемами. В присутствии указанного соединения электроны могут поступать в фотосистему I от таких искусственных доноров, как аскорбиновая кислота или индофенольный краситель. [c.37]

    Пикосекундные кинетические исследования [94] обесцвечивания бактериохлорофилла, содержащегося в изолированных реакционных центрах, показали, что начальное фотохимическое окисление хлорофилла в форму Хл+ происходит в течение 10 ° с (0,1 не). В соответствии с этим время жизни т возбужденного состояния хлорофилла в фотосистеме I хлоропластов оценивается в 0,13 не (сравните с временем жизи То для свободного хлорофилла, равным 19 не) [95]. Низкое значение т в случае хлоропластов обусловлено быстрым переносом электрона с хлорофилла на акцептор. Время жизни возбужденного состояния хлорофилла в фотосистеме II примерно в 10 раз больше (1,5 нс) > [95]. [c.47]

    Чем различаются процессы фотосинтеза у растений (рис. 13-18) и бактерий Ответ очевиден бактерии имеют только фотосистему I, а фотосистема II, в результате функционирования которой высвобождается 2, у них отсутствует. Экспериментально показано, что образование фотосинтезирующими бактериями восстанавливающих эквивалентов (восстановленного ферредоксина или NADPH) требует примерно вдвое меньшего числа квантов света, чем это необходимо зеленым растениям, в которых должна расщепляться НгО. [c.39]

    Поскольку хлорофиллы легко и полностью экстрагируются мягкими растворителями [81], можно подумать, что они попросту растворены в липидном компоненте мембран. Однако в спектре поглощения хлорофилла в листьях присутствуют полосы, сдвинутые в красную сторону относительно их положения в спектре хлорофилла а в ацетоне, причем величина сдвига достигает 900 см . В большинстве зеленых растений хлорофилл имеет по меньшей мере четыре основные полосы с Ятах = 662 нм (15 120 см->), 670 нм (14940 см ), 677 нм (14770 см ) и ооЗ нм (14 630 СМ ) [82]. Иногда наблюдаются также минорные поло-с Vmax = l4 420 и 14 230 СМ (рис. 13-20). Отсюда можно сделать вывод, что молекулы хлорофилла внутри мембран находятся в разном окружении. В результате спектр поглощения становится шире, опособ-ртвуя более эффективному улавливанию света. Считается, что в реак- онных центрах тоже имеется хлорофилл в фотосинтезирующей сис- ме I он поглощает при 700 нм (14290 см ), а в фотосистеме II — 682 нм (14 660 см- ). [c.41]

    Согласно схеме, изображенной на рис. 13-18, акцептором А в фотосистеме II служит Q, а в фотосистеме I — Z. Окисленный хлорофилл (Хл+) далее немедленно вступает в реакцию, получая электрон от некоего донора. В фотосистеме I наиболее вероятным кандидатом на роль такого донора является пластоцианнн. [c.46]

    Обычно считают, что в цепи между фотосистемами II и I имеются два переносчика электронов — цитохром Й559 и цитохром f (последний является цитохромом с-типа) [104а]. Хотя высказывались предположения о существовании параллельных путей [105], большинство исследователей полагают, что переносчики расположены в следующей последовательности  [c.49]


    Существует мнение, что перенос протонов через мембраны тилакоидов сопряжен с циклическим окислением и восстановлением пластохинонов (аналогично тому, как это происходит с убихиноном в митохондриях) и что фотосистема II локализована внутри тилакоидов. В таком случае после расщепления молекулы воды два протона (по одному на электрон) останутся внутри тилакоида, а электроны будут выведены под действием света через двойной липндный слой к акцептору Q, расположенному снаружи. Аналогичным образом можно предположить,, что хлорофилл в фотосистеме II локализован с внутренней стороны двойного слоя, а акцептор Z — снаружи (рис. 13-18). Поскольку в ходе происходящего с наружной стороны восстановления NAD+ в NADH высвобождается протон, в сумме происходит перекачивание полутора про гонов на каждый электрон, проходящий через 2-систему [107, 109]. Согласно химио-оомотической гипотезе (гл. 10, разд. Д,9, в), источником свободной энергии, необходимой для синтеза АТР, является именно Перенос протонов, приводящий к появлению градиента pH и мембранного потенциала. [c.50]

    Что касается донора электронов в фотосистеме И, то имеются веские данные о непосредственном участии в эт ом процессе двух-четырех йонов Мп2+, присутствующих в каждом из реакционных центров [Ш]. Поэтому цепь часто изображают идущей от Н2О через Мп + на Р682. Была предложена специальная схема [112], отражающая прямое взаимодействие между окисленным хлорофиллом и гидроксил-ионом воды, связанным с металлом координационной связью  [c.50]

    Еще одним моментом, связанным с переносом электронов на этом конце цепи, является возможное наличие особого участка, где запасается энергия, необходимая для синтеза АТР [113]. В этом случае процесс должен включать большее число стадий, чем указано на схеме (13-30), что делает его еЩе ближе к цитохромоксидазной системе, работающей в обратном направлении. Хотя в целом природа процессов, протекающих на завершающей стадии образования О2, еще далеко не ясна, исследования ц этом направлении в какой-то степени облегчаются в связи с открытием специфических Ингибиторов. Так, гидроксила мин, по-видимому, блокирует окисление Н2О, не влияя на перенос электронов от искусственных доноров через фотосистемы II и I. [c.51]

    Ингибиторы фотосинтеза. Эти Г. проникают в хлоро-пласты растений нек-рые из них (напр., соли дипиридилия) препятствуют захвату электронов ферредоксином и нарушают процесс восстановления кофермента никотинамид-адениндинуклеотидфосфата (НАДФ) в т. наз. фотосистеме [c.525]

    В фотосинтезе Ф. осуществляет перенос электрона от фотосистемы I к никотинамидаденивдифосфату, он участвует также в восстановлении сульфита, нитрита, ненасыщенных жирных к-т, поддержании активности фруктозо-1,6-дифосфа-тазы, пируватдекарбоксилазы и др. Ф. активен в ряде р-ций, в к-рых образуется или используется в качестве восстановителя Н2 партнером Ф. во мн. случаях выступают разл. щдрогеназы. [c.85]

    Фотосистема I может действовать автономно без контакта с системой П. В этом случае циклич. перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии кофермент [c.177]

    Общепринято, что хлорофилл в зеленом листе находится в агрегированном состоянии в двух фотосистемах (I и II) и включает в свое окружение, кроме белка и липидов, молекулы каротина, цитохромов, хинонов и др. В фотохимической стадии участвуют аденозинфосфаты (АДФ и АТФ), никотинамид-адениндинуклеотидфосфат (НАДФ), ферредоксин, до сотни различных ферментов, многочисленные молекулы неустановленной химической природы, условно называемые факторами. Хлорофилл обладает оптимальным набором свойств, [c.284]

    В фотосистемах I и И образуются высокоэнергетические электроны в форме обладающей сильноотрицательным А7е является высокоэнергетическим донором электронов. Штриховая стрелка обозначает возвращение переносчиков электронов в исходное состояние. СЫ - хлорофилл в невозбужденном состоянии СЬГ - возбужденная молекула хлорофилла СЬГ - хлорофилл после потери электрона РО - ферредоксин [c.93]


Смотреть страницы где упоминается термин фотосистеме: [c.233]    [c.13]    [c.37]    [c.38]    [c.43]    [c.48]    [c.48]    [c.49]    [c.525]    [c.96]    [c.177]    [c.177]    [c.177]    [c.177]    [c.177]    [c.177]    [c.179]    [c.26]    [c.541]    [c.93]    [c.93]    [c.93]   
Биохимия Том 3 (1980) -- [ c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте