Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводный обм

    При нарушении углеводного обмена в организме человека возникает опасная болезнь — сахарный диабет. Он обусловлен повышенным содержанием глюкозы в крови. Из-за ухудшающейся экологической обстановки заболеваемость растет. Поэтому большое значение имеет разработка новых методов для диагностики ранних форм сахарного диабета. [c.67]


    Агишев Т.Х. Анализ параметров углеводного обмена // Математические модели и методы анализа медико-биологических данных. М., 1990. С. 39-45. [c.214]

    Другим случаем моделирования является синтез субстратов ферментов углеводного обмена и их структурных модификаций, служащих для изучения субстратной специфичности таких ферментов или для их избирательного ингибирования. [c.116]

    Такого рода патологические отклонения в структуре гликогена изредка случаются это так называемые гликогеновые болезни, приводящие к тяжелейшим нарушениям углеводного обмена и обычно кончающиеся гибелью больного в раннем возрасте. [c.146]

    А.-промежут. продукт углеводного обмена в живых организмах. [c.224]

    Недостаток витамина В, в организме вызывает глубокие нарушения углеводного обмена, что ведет к тяжелому заболеванию периферической нервной системы (полиневриту), расстройствам функций сердечно-сосудистой системы и органов пищеварения. [c.100]

    Наряду с другими ароматическими аминокислотами у микроорганизмов (подобно больщинству организмов) триптофан образуется из метаболитов углеводного обмена — эритрозо-4-фосфата и фосфоенолпирувата. [c.48]

    Витамин В] (тиамин) имеет важное значение для животного организма. Он входит в состав кофермента кокарбоксилазы, которая катализирует реакции декарбоксилирования пировино-градной кислоты, накопление которой в процессе углеводного обмена нарушает нормальную функцию нервной системы и вызывает полиневрит ( бери-бери ). В этом состоит основная биологическая роль витамина Вь [c.396]

    Перестройка метаболизма, осуществляемая организмом при продолжительном голодании, состоит в переходе от углеводного обмена к липидному. Например, 75% глюкозы, потребляемой мозгом, может быть постепенно заменено кетоновыми телами, образующимися при распаде жиров (гл. 9, разд. А, 7) [44]. [c.515]

    Лишь Ш аминокислот могут синтезироваться в организмах млекопитающих. В синтезе этих заменимых аминокислот (рис. 1-11) используются простые продукты углеводного обмена процесс включает несколько стадий. [c.49]

    Снижение уровня сахара в крови, регуляция углеводного обмена, влияние на белковый и липидный обмен Повышение уровня сахара в крови стимуляцией гликогенеза в печени [c.239]

    Синтез липидов стимулируют ингибиторы углеводного обмена, например арсенит натрия. [c.133]

    Ацетоуксусная кислота образуется при нарушениях углеводного обмена у больных диабетом и частично выделяется с мочой. [c.617]


    Окисление моносахаридов. Обработка альдоз слабыми окислителями приводит к превращению альдегидной группы в положении атома С-1 в карбоксильную группу с образованием так называемых альдоновых кислот. Альдоновой кислотой может быть В-глюконовая кислота, которая образуется при окислении альдегидной группы В-глюкозы. Фосфорилированная форма В-глюконовой кислоты играет важную роль в качестве промежуточного продукта углеводного обмена. Другой пример - В-галактоновая кислота-продукт окисления альдегидной группы В-га-лактозы. [c.176]

    Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия окисление продукта гликолиза—пирувата. [c.319]

    Пути регуляции метаболизма углеводов крайне разнообразны. На любых уровнях организации живого организма обмен углеводов регулируется факторами, влияющими на активность ферментов, участвующих в реакциях углеводного обмена. К этим факторам относятся концентрация субстратов, содержание продуктов (метаболитов) отдельных реакций, кислородный [c.357]

    В данной главе было показано влияние перечисленных факторов на активность ферментных систем углеводного обмена. И тем не менее некоторые аспекты регуляции метаболизма углеводов напомним. [c.358]

    У человека и животных на всех стадиях синтеза и распада углеводов регуляция углеводного обмена осуществляется при участии ЦНС и гормонов. [c.359]

    НАРУШЕНИЯ УГЛЕВОДНОГО ОБМЕНА [c.359]

    Гипергликемия может возникнуть не только при заболевании поджелудочной железы, но и в результате расстройства функции других эндокринных желез, участвующих в регуляции углеводного обмена. Так, гипергликемия может наблюдаться при гипофизарных заболеваниях, опухолях коркового вещества надпочечников, гиперфункции щитовидной железы. Иногда гипергликемия появляется во время беременности. Наконец, гипергликемия возможна при органических поражениях ЦНС, расстройствах мозгового кровообращения, болезнях печени воспалительного или дегенеративного характера. Поддержание постоянства уровня глюкозы в крови, как отмечалось,— важнейшая функция печени, резервные возможности которой в этом отношении весьма велики. Поэтому гипер гликемия, обусловленная нарушением функции печени, выявляется обычно при тяжелых ее поражениях. [c.360]

    Глюкозурия. Обычно присутствие глюкозы в моче (глюкозурия) является результатом нарушения углеводного обмена вследствие патологических изменений в поджелудочной железе (сахарный диабет, острый панкреатит и т.д.). Реже встречается глюкозурия почечного происхождения, связанная с недостаточностью резорбции глюкозы в почечных канальцах. Как временное явление глюкозурия может возникнуть при некоторых острых инфекционных и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга. [c.361]

    Ацетальдегид, этаналь. Ацетальдегид содержится в небольшом количестве (преимущественно в виде ацеталя) в первой фракции при перегонке продуктов спиртового брожения. Этот второй член насыщенных альдегидов также имеет большое значение с биологической точки зрения, поскольку он, как мы видели выше, представляет собой промежуточный продукт спиртового брожения сахаров (о спиртовом брожении см. стр. 119). Возможно что он играет также некоторую роль и при процессах углеводного обмена в клетках животных иногда его находят в моче. [c.213]

    Гомеостатический уровень глюкозы в крови ОЬ), максимальное отклонение от него (Ятах) и общая нагрузка на организм после гфиема глюкозы (У) увеличились соответственно на 8, 25 и 46%. Такие изменения углеводного обмена привели к заметному увеличению числа заболевших сахарным диабетом. [c.150]

    Гидразин — хорощий восстановитель. При его горении в атмосфере воздуха или кислорода выделяется очень большое количество теплоты, вследств.тя чего гидразин нашел применение в качестве составной части топлива ракетных двигателей. Гидра-зин-дигидросульфат N2114112804 под названием Ст-разин применяется при лечении больных раком. Он способствует улучшению углеводного обмена раковых клеток, задерживг1ет рост и вызывает распад некоторых опухолей. Гидразин и все его производные сильно ядовиты, могут вызывать образование сарком и лейкемий. [c.434]

    Первое природное белковое вещество, строение которого было точно расшифровано (Сейнджер, 1949—1954),— гормон инсулин, вырабатываемый поджелудочной железой и регулирующий в животных организмах процессы углеводного обмена. [c.293]

    Три метаболита цикла Кребса являются а-кетокислотами пировиноградная, щавелевоуксусная и а-кетог.лутаровая кислоты. При пере-аминировании они могут давать соответствующие аминокислоты — аланин, аспарагиновую и глутаминовую кислоты. Эти кислоты не являются незаменимыми компонентами пищи и обычно синтезируются из промежуточных продуктов углеводного обмена. Обратимость процесса подтверждается тем, что из аминокислот только аланин, ашарагиновая и глутаминовая кислоты быстро окисляются в мышцах. [c.731]


    Бармаш A. П. Углеводно-фосфатные соединения и ферменты углеводного обмена в ткани лактирующей молочной железы // Биохимия.—М., 1962.— Вып. 2.—30 с. [c.165]

    Мет — Асп — Тре — ОН (мол. м. 3485 букв, обозначения см, в ст. а-Аминокислоты). Для сохранения биол, активности Г. необходима структурная целостность его молекулы. Секретируется а-клетками островков поджелудочной железы, В-во, подобное Г,, вырабатывается также в слизистой оболочке кишечника. Г, участвует в регуляции углеводного обмена, является физиол, антагонистом инсулина. Усиливает распад и тормозит синтез гликогена в печени, стимулирует образование глюкозы из аминокислот и секрецию инсулина, вызывает распад жиров. При введении в организм повышает уровень сахара в крови, [c.139]

    ТИАМИНДИФОСФАТ [ТДФ, кокарбоксилаза, тиаминпирофосфат формулу см. в ст. Тиамин, Х = = ОРО(ОН)ОРО(ОН)2], коферментная форма тиамина fr., 241—243 С (с разл.) раств. в воде (22%), не раств. в орг, р-ритедях. Широко распространен в природе, содержится в животных тканях, растениях и микроорганизмах. Входит в состав каталитич. центров важнейших ферментов углеводного обмена. Механизм действия основан иа способности диссоциировать с отщеплением протона при втором атоме углерода тиазолового кольца. Получ. синтетически из тиамина и пирофосфорной к-ты. Примеп. для лечения сердечно-сосудистых заболеваний. Кроме Т., в организме присутствуют моно- и трифосфорный эфиры тиамина (ТМФ и ТТФ). [c.576]

    Самым ответственным и наиболее сложным по химической структуре биологически активным производным пантотеновой кислоты является кофермент А, катализирующий различные реакции переноса и присоединения ацильных остатков в процессах жирового и углеводного обмена. Активной группой кофермента, осуществляющей эти реакции, является суль-фогидрильная группа 2-меркаптоэтиламина. Строение кофермента А было изучено реакциями его гидролитического расщепления [14, 33] на основании полученных данных установлена следующая химическая формула  [c.138]

    По зарубежнь данны.м, И. является ОВ. Он обладает разносторонним физиол. действием. Общее отравление организма обусловлено нарушениями углеводного обмена и биоэнергетич. процессов из-за угнетения ипритом фер.мента гексокиназы. Кожно-нарывное действие И. проявляется вследствие его способности алкилировать структурные белки клеточных мембран, изменяя их проницаемость. Алкилирующим действием И. объясняются также его мутагенные св-ва. И. поражает организ.м в виде пара, аэрозоля и капель при любых видах аппликации. Миним. доза, вызывающая образование нарывов на коже, составляет 0,1 мг/см . Легкие поражения глаз наступают при концентрации 0,001 мг/л и экспозиции 30 мин. Смертельная доза при действии через кож-у 70 мг/кг (скрытый период действия до 12 ч и более). Смертельная концентрация при действии через органы дыхания в течение 1,5 ч-ок. 0,015 мг/л (скрытый период 4-24 ч). Впервые И. был применен Германией как ОВ в 1917 ) бельгийского города Ипр (отсюда назв.). Защита от И.-противогаз и ср-ва защиты кожи. в. и. Емельянов. [c.271]

    Тиамин, поступая с пищей, всасывается из кишечника через кровь в ткани и там подвергается фосфорилированию. Образующийся тиаминдифосфат (ТДФ) или кокарбоксилаза является биологическим катализатором, участвующим в декарбок-силировании пировиноградной кислоты, которая, являясь продуктом углеводного обмена, оказывает токсическое действие на нервные клетки, вызывая полиневрит. [c.398]

    Какими же факторами определяется скорость функционирования цикла трикарбоновых кислот Как и в других важнейших метаболических путях, работает несколько разных механизмов контроля, причем в различных условиях скорость лимитируется разными стадиями процесса [18] Главными факторами являются 1) скорость поступления ацетильных групп (которая в свою очередь может зависеть от наличия свободного неацилированного СоА) 2) наличие оксалоацетата и 3) скорость реокисления NADH в NAD+ в цепи переноса электронов (гл. 10). Обратите внимание (рис. 9-3), что ацетил-СоА служит по-лом<ительным эффектором для превращения пирувата в оксалоацетат. Таким образом, ацетил-СоА включает процесс образования соединения, требующегося для его собственного метаболизма. В отсутствие пирувата функционирование цикла может затормозиться из-за недостатка оксалоацетата По-видимому, именно так и происходит в тех случаях, когда в печени метаболизируются высокие концентрации этанола Последний окисляется в ацетат, но не может превратиться в оксалоацетат. Накапливающиеся ацетильные группы превращаются в кетоновые тела, которые, однако, медленно окисляются в цикле. Аналогичная проблема возникает при метаболизме жирных кислот в условиях нарушения углеводного обмена, например в случае диабета (дополнение 11-В). [c.324]

    В совокупности пут1И биосинтеза и биологического распада образуют непрерывные петли — серии реакций, которые протекают одновременно н часто в одном и том же участке клетки. Метаболические петли часто, начинаются в центральных участках путей углеводного обмена, включающих превращения трех- и четырехуглеродных соединений (фосфо-глицератов, пирувата или оксалоацетата). После потери некоторого-числа атомов углерода в виде СО2 оставшаяся часть соединения возвращается в основной метаболический поток, включаясь в главный ка-таболический путь, приводящий к ацетил-СоА и окислению в цикле трикарбоновых кислот. Однако наряду с этим (Могут иметь место и многие другие варианты. Не все петли замыкаются в циклы в пределах данного [c.456]

    В семенах кукурузы различной спелости, в листьях и проростках найдены различные группы ферментов эстеразы — фосфатаза и липаза карбогидразы — мальтаза, альфа- и бета-амилазы, цитаза из фераментов углеводного обмена — фосфо рилаза. [c.34]

    Инсулин регулирует углеводный обмен в организме. Недостаток или отсутствие инсулина при болезни поджелудочной железы вызывает диабет. При избытке инсулина ( ударная доза инсулина, вводимая в случае некоторых заболеваний) глюкоза так быстро исчезает из кровяного русла и поглощается печенью и мышцами, что мозг и другие органы не получают этого главного питательного вещества и может наступить состояние комы и даже смерть. От этого тяжелого состояния спасает немедленная инъекция глюкозы. Считают, что роль инсулина, как регулятора углеводного обмена, сводится к воздействшо его на клеточные мембраны и увеличению скорости проникновения через них глюкозы. [c.753]

    Изменение углеводного обмена при гиноксических состояниях. Отставание скорости окисления пирувата от интенсивности гликолиза наблюдается чаще всего при гиноксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозах, а также в результате относительной гипоксии при чрезмерной мышечной работе. [c.362]

    Центральную роль в превращениях глюкозы и саморегуляции углеводного обмена в печени играет глюкозо-6-фосфат. Он резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный перенос глюкозы с уридиндифосфоглюкозы на молекулу синтезирующегося гликогена, является субстратом для дальнейших гликолитических превращений, а также окисления глюкозы, в том числе по пентозофосфатному пути. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани (рис. 16.1). [c.553]


Библиография для Углеводный обм: [c.590]   
Смотреть страницы где упоминается термин Углеводный обм: [c.25]    [c.638]    [c.223]    [c.519]    [c.174]    [c.275]    [c.564]    [c.99]    [c.239]    [c.84]    [c.359]   
Биохимия Издание 2 (1962) -- [ c.485 , c.491 , c.563 , c.564 ]




ПОИСК







© 2025 chem21.info Реклама на сайте