Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлоропласты ферменты

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]


    Включение в протопорфирин ферро-иона требует участия специального фермента, протогем — ферро-лиазы (феррохелатазы) [78, 79]. Установлено, что этот фермент прочно связан с внутренней мембраной митохондрий животных клеток, хлоропластов растений и хроматофоров бактерий. Хотя обычно Fe +, по-видимому, является единственным ионом металла, включающимся в порфирин, в дрожжах в заметных количествах накапливается [Zn +]-протопорфириновый хелат известен также комплекс с Си + (гл. 10, разд. Б, 1). [c.124]

    Представляет интерес вопрос о роли пигмента и ферментных систем в процессе разложения воды. Из ферментов цитохром и флавин рассматриваются как возможные участники этого процесса [345, 346]. При этом цитохромная система либо осуществляет электронный перенос между системами хлоропластов, либо непосредственно участвует в окислении воды. [c.138]

    Часть образовавшейся перекиси водорода неферментативным путем декарбоксилирует глиоксилат (при этом образуются формиат и СО2), но основная ее часть, вероятно, разрушается в пероксисомах под действием пероксидаз или каталазы (последний фермент, как это ни странно, отсутствует в хлоропластах — видимо, в этом состоит одна из причин, почему окисление гликолата происходит именно в микро- [c.57]

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]

    Известно, что хлоропласты (например, из шпината) в присутствии искусственного донора электронов и бактериального экстракта, содержащего фермент гидрогеназу, способны продуцировать водород  [c.26]

    Протеазы. В листьях обнаружено, по меньшей мере, четыре типа этих ферментов [101]. Они локализованы среди других в хлоропластах и вакуолях [85, 112]. Физиологическое значение этих протеаз неясно. Однако замечено, что их содержание нередко повышается в вакуолях в-процессе старения тканей [115]. Кроме того, природные поликатионы, такие, как кадаверин, спермин, путресцин или спермидин, подавляют активность некоторых протеаз в клетках [18]. В листьях люцерны потери белков могут достигать 40 % между заготовкой зеленой массы и ее гомогенизацией Финли и др. [31] относят их за счет протеаз, выявленных в листьях. Из люцерны была выделена протеаза с молекулярной массой 68 ООО Да, у которой оптимальная активность проявляется при pH 7—9, это позволяет ей оставаться активной даже после обработки зеленого клеточного сока люцерны [108]. [c.256]


    Растворимая фаза хлоропластов, или строма, представляет собой белковый гель, в котором концентрация белка может достигать 300 мг/мл [26], где присутствуют также нуклеиновые кислоты, рибосомы и ряд ферментов, катализирующих реакции метаболизма этих органелл (более детальные сведения см. в [17]). [c.242]

    ДНК-полимераза у, по-видимому, состоит из нескольких идентичных субъединиц с молекулярной массой около 50 кД. Это митохондриальный фермент, который осуществляет синтез ДНК митохондрий. Сходный фермент обнаружен в хлоропластах растений. [c.51]

    П. представлены большой группой ферментов. ДНК-за-висимые ДНК-полимеразы участвуют в репликации (удвоении) ДНК в цикле деления клетки, репарации (устранении дефектов) ДНК и репликации ДНК митохондрий и хлоропластов матрицей для синтеза ДНК, катализируемого этими ферментами, служит односпиральная ДНК. Все семейства, роды и виды известных живых организмов содержат ферменты, не содержащие коферменты, и отличающиеся по мол. массе, кол-ву субъединиц, pH, при к-ром фермент обладает макс. активностью. [c.625]

    Уравнение (6.30) дает значение объема 1,4-10" см , который соответствует объему куба с ребром 2,4 мкм. Если мы сопоставим эту величину с объемом клетки (см. табл. 1-2) или органеллы, то увидим, что объем, захватываемый молекулой фермента за 1 с, составляет довольно заметную часть объема небольшой по размеру клетки, митохондрии, хлоропласта и т. д. [c.16]

    Биосинтез большой субъединицы контролируется ДНК хлоропластов он осуществляется на рибосомах этих органелл. Малая субъединица синтезируется в форме предшественника с более высокой изоэлектрической точкой при посредстве ядерной ДНК и на рибосомах цитоплазмы. Этот положительно заряженный предшественник взаимодействует с оболочкой хлоропластов, которая имеет отрицательный заряд [47], затем проникает через оболочку и теряет положительно заряженный пептид перед тем, как соединиться с большими субъединицами для образования активного фермента. [c.243]

    Среди ферментов окисления липидов наиболее характерны, вероятно, липоксигеназы (рис. 6.13). Эти ферменты, обнаруженные в листьях люцерны [37, 113], очень активны, но малоустойчивы к термической денатурации. Особенно примечательно, что некоторые из них связаны с ламеллами хлоропластов [21], тогда как другие растворимы [22]. Они принимают участие в распаде [c.257]

    Пируват, образующийся в клетках обкладки, в основном возвращается в клетки мезофилла и фосфорилируется при участии пируват, фосфат—дикиназы. Этот необычный фермент [уравнение (11-22)] расщепляет АТР на АМР и РР, который в свою очередь расщепляется до Pi. В результате на возвращение каждой молекулы пирувата в цикл приходится затрачивать энергию двух выоокоэнергетических связей. По этой причине считают, что циклическое фотофосфорилирование играет более важную роль в хлоропластах клеток мезофилла, чем в клетках обкладки. [c.59]

    При поглощении хлоропластами СО2, меченного С, первым органическим соединением, в котором обнаруживается радиоактивная метка, оказывается 3-фосфоглицерат. Две молекулы этого соединения образуются под действием присутствующего в хлоронластах фермента рибулозо-1,5-дифосфат — карбоксилазы (в листьях шпината его содержание составляет 16% общего количества белка). Этот фермент содержится в зеленых растениях, а также в пурпурных и зеленых бактериях. Реакция, катализируемая данным ферментом, отличается от других реакций карбоксилирования тем, что продукт карбоксилирования расщепляется тем же самым ферментом. Структура субстрата, к которому фермент проявляет абсолютную специфичность, не допускает образования наблюдаемого продукта путем прямого р-карбоксилирования. На основании косвенных доказательств было сделано предположение о реализации следующего механизма  [c.175]

    Наиболее характерные для хлоропластов ферменты катализируют фотосинтетическую фиксацию двуокиси углерода — это так называемый цикл Кальвина. Ферментом карбоксилиро-вания является рибулозобисфосфаткарбоксилаза/оксигеназа. Этот фермент обладает многими весьма примечательными свойствами [26], в частности очень слабой энзиматической активностью по сравнению с активностями других ферментов цикла Кальвина. Кинетическое равновесие устанавливается очень высоким содержанием рибулозобисфосфаткарбоксилазы/оксигеназы, которая может составлять 80 % общего количества белков стромы. [c.242]

    Этот процесс катализируется находящимся в tjjom хлоропластов ферментом рибулозодифосфат карбоксилазой. [c.367]

    Одним из многочисленных восстановленных кофакторов, образующихся в результате превращения световой энергии, является локализованный в хлоропластах ферредоксин, обладающий наиболее высоким отрицательным окислительно-восстановительным потенциалом и являющийся, следовательно, наиболее сильным восстанавливающим агентом [42]. Это соединение, содержащее белок и связанное железо, имеет при pH 7 окислительно-восстановительный потенциал, сравнимый с потенциалом газообразного водорода, а именно —0,42 в. Восстановленный ферредоксин хлоропластов вместе со специфическим, локализованным в хлоропластах ферментом вызывает восстановление НАДФ до НАДФ-На, который имеет окислительно-восстановительный потенциал —0,32 в. [c.536]

    Хлоропласты содержат свою, специфическую, ДНК, которая отличается от ядерной ДНК и передается по наследству через пропластиды, находящиеся в цитоплазме материнской клетки (яйцеклетки) от отцовского растения (через пыльцевую клетку) хлоропластная ДНК не наследуется. Содержащиеся в хлоропласте ферменты кодируются либо ядерной, либо хлоропла-стной ДНК, некоторые же из них, например рибулозобисфос-фаткарбоксилаза, состоят из двух белковых субъединиц, из [c.53]


    Помимо хлорофилла, который является основным видом фотосинтетических пигментов, в зелепо.м листе (в так называемых хлорипластах, представляющих собой сложные специализированные биологические структуры) содержатся и другие пигменты — каротинонды и фикобелины, которые обычно называют вспомогательными, Эти пигменты, по современным представлениям, принимают известное участие в фотосинтезе, а также защищают хлорофилл от фотоокисления. Помимо пигментов, основными компонентами хлоропластов, в которых, собственно, и осуществляется весь процесс фотосинтеза, являются липоидные вещества и белки, которые содержат большое число ферментов, необходимых для осуществления последующих стадий фотосинтеза, не связанных с воздействием солнечной радиации. [c.177]

    Самые активные липазы в листьях — это ацилгидролазы и фосфолипазы [32, 20]. Ацилгидролазы обычно характеризуются довольно высокой специфичностью. Они интенсивно воздействуют на многочисленные глицеролипиды или их лизопроизводные, высвобождая жирные кислоты. Эти ферменты суш.ествуют в растворимой форме, но также связаны с ламеллами хлоропластов. Фосфолипазы D превраш.ают фосфолипиды в фосфатидную кислоту. Они могут катализировать реакции трансфосфатидиля-ции. [c.256]

    В клетках зеленых растений хлорофилл содержится в особых частицах — хлоропластах, которые и являются химическим заводом , осуществляющим фотосинтез. Кроме хлорофилла, в процессе фотосинтеза участвует целая система ферментов. Из углекислого газа в процессе фотосинтеза образуются триозы (глицериновый альдегид СН. ОН—СНОН—СНО, диоксиацетон НОСН2СОСН2ОН), которые далее превращаются в гексозу и затем в крахмал. Все эти превращения идут через стадию эфиров фосфорной кислоты. [c.304]

    Диффузия играет большую роль на многих стадиях процесса фотосинтети-ческого включения углерода СОг в углеводы. При этом углекислый газ диффундирует из атмосферы, достигая поверхности листа, а затем проходит через усть-ичные отверстия. Войдя в лист, СО2 диффундирует по межклеточным воздухоносным пространствам, а затем через клеточные оболочки и плазму клеток ме.зо-филла листа. Далее углекислый газ, по-виднмому, в форме НСОг диффундирует через цитоплазму и достигает хлоропластов. Затем СО2 оказывается в хлоропласте и попадает в зону действия ферментов, участвующих в образовании углеводов. Как видно, одну только эту сторону фотосинтеза можно расчленить на много стадий, в каждой из которых важную роль играет диффузия. Если бы с помощью ферментов фиксировался весь углекислый газ, находящийся в сфере их действия, и не происходила бы диффузия новых количеств углекислого газа из атмосферы, окружающей растение, процесс фотосинтеза прекратился бы. Диффузия важна также для многих других аспектов физиологии растений, особенно для проникновения веществ через мембраны. [c.17]

    Марганец является компонентом вишнево-красной супер-оксиддисмутазы из Е. соИ [уравнение (8-61) см. также дополнение 10-3]. Этот фермент с мол. весом 40 000 содержит два атома Мп(1П). Аналогичные ферменты были выделены из митохондрий куриной печени и из дрожжей. Дрожжевой фермент представляет собой тетрамер каждая субъединица с мол. весам 24 000 содержит один атом связанного марганца ". Белок, известный под названием авиманганина, по-ви-димому, является неактивной формой куриного фермента. Интересно, что цитоплазматические супероксиддисмутазы из тех же источников являются u-Zn-ферментами (дополнение 10-3)Д. Ионы марганца в супероксиддисмутазах в ходе катализа реакции, описываемой уравнением (8-61), как полагают, совершают переходы между состояниями окисления II и III. То же, вероятно, относится к содержащему марганец белку (или нескольким таким белкам) в хлоропластах [урав- [c.52]

    Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетич. аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (т. наз. тилакои-дах), тогда как темповая стадия происходит в жвдком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в т. наз. хроматофорах. [c.176]

    Темяовая стадия Ф. Все фотосикгсзирующие организмы, выделяющие О2, а также нек-рые фотосинтезирующие бактерии сначала восстанавливают СО до фосфатов сахаров в т. наз. цикле Калвина. У фотоситезирующих бактерий встречаются, по-видимому, и др. механизмы. Большинство ферментов цикла Калвина находится в растворимом состоянии в строме хлоропластов. [c.178]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Ферменты адсорбировались на поверхности кремнезема, и было обнаружено сохранение их активности. Но тот факт, что митохондрии (частицы, представляющие собой образования, выделяемые из живых клеток, и состоящие из сложных ферментных систем) можно подобным же образом иммобилизовать на кремнеземе, дает возможность раскрыть целые новые области исследований в биохимии [652а]. Другие содержащие мембраны частицы, или органеллы, могут аналогичным образом фиксироваться на кремнеземе, например в виде хлоропластов и микро-сом печени. Поверхность кремнезема должна быть прежде всего превращена в органофильную посредством ее обработки с нанесением алкилсилильных групп. Затем подобные биологические образования могут прилипать к поверхности, давая монослойное покрытие при температуре около 27°С, но они способны десорбироваться при 5°С. Природа такого эффекта непонятна, но можно сделать предположение, что поскольку водородные связи становятся более прочными при 5°С, то вода тем или иным образом вытесняет эти частицы с поверхности, которые должны удерживаться на ней гидрофобными связями. Подобные гидрофобные связи имеют место, и они используются для закрепления ферментов на кремнеземной поверхности [6526]. [c.831]

    Оболочка хлоропласта представляет собой непрерывную двойную мембрану, которая функционирует как селективный барьер при транспорте метаболитов внутрь органеллы или из нее. Полагают, что внутренняя мембрана может играть некоторую роль в формировании новых внутренних ламелл. У некоторых видов растений к внутренней мембране оболочки хлоропласта прилегает протяженная система трубочек и пузырьков. Эта система, известная как периферический ретикулум, по-видимому, характерна для растений, обладающих С4-путем фиксации углерода (разд. 10.6), но иногда она обнаруживается и у некоторых Сз-растений, в частности в стрессовых условиях окружающей среды. Оболочка хлоропластов хлорофилла не содержит, однако в ней присутствуют каротиноиды, а именно зеаксантин (10.1), антераксантин (10.2) и виолаксантии (10.3), которые с помощью ферментов могут превращаться друг в друга. В последнее время появляется все больше данных, свиде- [c.329]

    Биологические макромолекулы, надмолекулярные структуры, клеточные органоиды, клетки, организмы, популяции — сложные системы, т. е. совокупности элементов, взаимодействующих друг с другом. Изучение явлений жизни исходит из исследований этих взаимодействий. Вместе с тем физическое рассмотрение сложной системы не может не основываться на изучении составляющих е элементов, взятых порознь, вплоть до молекулярного уровня организации. Сами взаимодействия определяются природой этих элементов. Соответственно мы имеем дело с ферментом и геном, с аксоном и миофибрилдой, с митохондрией и хлоропластом. Эти элементы более сложных систем в свою очередь представляют собой сложные системы. Анализ явлений жизни на всех уровнях организации требует подходов, согласующихся с представлениями общей теории систем. [c.512]

    Количество синтезируемого в растениях протоксина попытались увеличить, осуществив экспрессию полностью измененного гена протоксина под контролем промотора гена малой субъединицы рибулозобисфосфат-карбоксила-зы, помещенного после хлоропластной сигнальной последовательности этого фермента, таким образом, чтобы сверхпродуцируемый протоксин был локализован в хлоропластах. Эта стратегия привела к радикальному повышению уровня экспрессии гена протоксина, так что на долю протоксина стало приходиться до 1% всех белков листа. В другом эксперименте ген протоксина вводили непосредственно в хлоропластную ДНК растения-хозяина. Это дает следующие преимущества. Во-первых, вводимый ген не нужно модифицировать, поскольку транскрипционный и трансляционный аппараты хлоропластов относятся к прокариотическому типу. Во-вторых, на одну клетку приходится много хлоропластов, а на один хлоропласт - много копий хлоропластной ДНК, поэтому ген протоксина присутствует в больщом числе копий, и эффективность его экспрессии повышается. В-третьих, хлоропласты передаются только через [c.392]

    Изменение цвета овощей и фруктов начинается с окисления монофенолов и о-дифенолов до о-хинонов. Катализатором процесса служат ферменты полифенолоксидазы. Они кодируются ядерной ДНК, имеют мол. массу примерно 59 ООО и локализуются в мембранах хлоропластов и митохондрий. [c.410]


Смотреть страницы где упоминается термин Хлоропласты ферменты: [c.252]    [c.139]    [c.301]    [c.405]    [c.137]    [c.11]    [c.54]    [c.56]    [c.59]    [c.270]    [c.588]    [c.317]    [c.150]    [c.191]    [c.201]    [c.215]    [c.412]    [c.223]   
Курс физиологии растений Издание 3 (1971) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Хлоропласт



© 2024 chem21.info Реклама на сайте