Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюконеогенез

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]


    Регулирует минеральный обмен Корковый слой Регулируют обмен белков и углево-надпочечников дов, стимулируют глюконеогенез [c.599]

    Мощный глюкокортикостероид стимулирует глюконеогенез и образование гликогена, способствует расщеплению жиров и белков. [c.187]

    Р-ция, катализируемая П.,-наиб, важная в обеспечении пополнения промежут. в-вами трикарбоновых кислот цикла (такие р-ции наз. анаплеротическими), имеет большое значение для глюконеогенеза. [c.546]

    О синтезе и метаболизме Ф. см. Глюконеогенез, Обмен веществ и Пентозофосфатный цикл. [c.192]

    Я. к.- один из важных промежут. продуктов обмена в-в в живых организмах. Участвует в обмене в-в в ввде малага, образующегося в трикарбоновых иислот цикле, глиоксилат-ном цикле, при глюконеогенезе. В результате ферментативных р-ций малат может превращаться в оксалоацетат, фумарат, пируват. [c.512]

    СИТ название глюконеогенеза, является важной составной частью цикла Кори (гл. 9, разд. Е). Она может быть использована организмом для превращения пирувата, образующегося в результате дезаминирования аланина или серина (гл. 14), в углеводы. [c.482]

    Четким симптомом диабета служит высокая концентрация глюкозы в крови, содержание которой может достигать 8— 60 мМ . Очевидно, что прекращение процесса использования глюкозы вызвано выходом глюкозы из-под контроля, осуществляемого по принципу обратной связи. В результате процесс глюконеогенеза становится более интенсивным, что в свою очередь приводит к усиленному расщеплению белков и аминокислот. Запасы гликогена в печени истощаются, и в моче обнаруживается избыток азота, образующегося в результате распада белков. Накопление продуктов расщепления жирных кислот приводит к избыточному образованию кетоновых тел (стр. 515), а увеличение объема мочи сопровождается обезвоживанием тканей. [c.505]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]


    Фермент широко распространен в тканях млекопитающих и представлен двумя изозимами, пространственно разобщенными в клетке. Один изозим локализован в цитозоле, другой связан с митохондриальной фракцией. Изозимы существенно различаются по аминокислотному составу, физико-химическим свойствам, зависимости активности от pH среды и, что особенно важно с физиологической точки зрения, по кинетическим свойствам. Различное сродство к субстратам реакции ставит изозимы фермента в разные условия в отношении доступности субстратов прямой и обратной реакций. Этим определяется бифункциональность поведения аспартатаминотрансферазы в печени реакция, катализируемая митохондриальным изозимом, может быть сдвинута от состояния равновесия в сторону образования а-кетоглутарата, и поэтому может быть связана с функционированием цикла Кребса и цикла мочевины. Наоборот, цитоплазматический изозим способствует образованию щавелевоуксусной кислоты, т. е. связан с функционированием глюконеогенеза. [c.351]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Глюкозо-6-фосфатаза (0-глюкозо-6-фосфогидролаза, КФ 3.1.3.9) является терминальным ферментом глюконеогенеза. Фермент мульти-функционален, поскольку способен не только катализировать гидролиз глюкозо-6-фосфата и других фосфорсодержащих соединений, но и осуществлять синтез глюкозо-6-фосфата из глюкозы, используя в качестве донора фосфатной группы целый ряд метаболитов, физиологически важными из которых являются пирофосфат и карбамоилфосфат  [c.370]

    НООССН2С(0)СООН АДФ -f Н3РО4 С помощью этой р-ции, катализируемой пируваткарбок-силазой, осуществляется непрерывное пополнение щавелевоуксусной к-ты, необходимой для бесперебойной работы цикла трикарбоновых к-т. Кроме того, эта р-ция-начальный этап глюконеогенеза. [c.290]

    Г.ц. локализован в высокоспециализированных субклеточных структурах-глиоксисомах. Образующаяся в них в результате р-ции I глиоксиловая к-та вовлекается снова в цикл, а второй продукт этой р-ции (янтарная к-та) не м. б. использован глиокснсомами и передается в митохондрии, где происходит его окисление до щавелевоукс сной к-ты Р-ции Г.ц. лежат в основе превращения запасного жира в углеводы (см. Глюконеогенез). В результате -окисления жирных к-т (р-ции II, III) образуется ацетилкофермент А, необходимый для функционирования Г.ц. [c.583]

    Одновременно Т.к.ц-метаболич. путь окисления до СО и HjO аминокислот, жирных к-т и углеводов, к-рые вступают в этот цикл на разл. его стадиях (схема 2). Кроме того, образующиеся ди- и трикарбоновые к-ты м.б. исходными субстратами в биосинтезе мн. соед. (схема 3). Так, оксалоацетат-субстрат в глюконеогенезе-, сукцинил-КоА-промежут. продукт в синтезе порфиринов, ацетил-КоА - в синтезе жирных к-т, стероидов, ацетилхолина. Образующийся в цикле СО2 используется в р-циях карбоксилирования в синтезе жирных к-т, орнитиновом цикле и др. Участие Т. к. ц. в биосинтезе и катаболизме мн. в-в обусловливает его важное место в обмене в-в. [c.634]

    Осн. пути метаболизма D-Г. 1) гликолиз и аэробное окисление до Oj и HjO, в результате к-рых образуются АТФ и др. макроэргич. соединения 2) синтез олиго- и полисахаридов 3) превращение в пентозы и др. простые сахара в пентозофосфатном цикле. О биосинтезе D-Г. см. Глюконеогенез. [c.589]

    АТФ-аденозинтрифосфат, АДФ - аденозиндифосфат, Р-фосфорная к-та нли ее остаток Фосфорилирование сопровождается активацией или инактивацией ферментов, напр, гликозилтрансфераз, а также изменением физ.-хим. св-в неферментных белков. Обратимое фосфорилирование белков контролирует, напр., такие важные процессы, как транскрипция и трансляция, метаболизм липидов, глюконеогенез, мышечное сокращение. [c.103]

    Действие глюкокортикоидов приводит в конечном счете к увеличению количества глюкозы, извлекаемой из печени (из-за повышения активности глюкозо-6-фосфатазы), к повышению содержания глюкозы в крови и гликогена в печени, а также к уменьшению количества синтезируемых мукополисахаридов. Процессы включения аминокислот, образующихся в результате распада белков, замедляются, а синтезы ферментов, катализирующих процессы распада белков, усиливаются. Среди этих ферментов тирозин- и аланинаминотрансферазы — ферменты, инициирующие процессы распада аминокислот и обеспечивающие в конечном счете образование фумарата и пирувата — предшественников глюкозы при глюконеогенезе. [c.515]

    Осн. углеводным субстратом в О.в. человека и выспшх животных служит глюкоза. Она сохраняется в виде резервного полисахарида гликогена в печени и частично в мьшщах. Восстановление запасов гликогена происходит благодаря его синтезу из глюкозы, образуемой при глюконеогенезе или поступающей в кровоток через стенки кишечника. В последний глюкоза попадает в результате гидролиза крахмала пищ, продуктов амилазой слюны и ферментами желудочно-кишечного тракта. [c.311]


    АКТГ, АСТН) секреция кортизола достигает у взрослого человека 15—30 мг в день. В крови кортизол присутствует в основном в связанной с белком форме белок плазмы, транспортирующий кортизол, называется транскортином. Как упоминалось в гл. 11, разд. Е, 2, кортизол — это глюкокортикоид, стимулирующий глюконеогенез и накопление глюкогена в печени. В мышцах и других тканях кортизол ингибирует синтез белка, а в жировой ткани усиливает расщепление жиров с освобождением жирных кислот. [c.585]

    Если потребность в НАДФН значительно превышает потребность в рибозо-5-фос-фате, происходит полное окисление глюкозо-б-фосфата до СО2, включающее окислит. стадию П.ц. и ресинтез глюкозо-6-фос-фата из фруктозо-б-фосфата по пути глюконеогенеза (р-ции 1-4, б, 10-12). В этом случае суммарное ур-иие р-ции  [c.464]

    D-Глюконат-б-фосфат 3/615, 616 Глюконеогенез 1/1155, 556, 1142, 1154, 1156, 1173 3/198, 270, 614, 617,623,811,920,1083 5/270, 1015. См. также Гликолиз Глюкоиовая кислота 1/1101, 1154, 1155 2/989, 1164 3/613, 877 4/1109 5/39, 148 [c.584]

    См. также Сахара, Фотосинтез альдозы н кетозы, см. Моносахариды биологическая роль, см. Биологическое окисление. Брожение, Гаико-лиз, Глюконеогенез иммобилизованные 2/1163 ископаемых остатков 3/871 катаболизм, см. Пентозофосфатный цикл [c.730]

    Однако общепринятое представление о том, что в процессе глюконеогенеза пи-руваткииаза не катализирует обратной реакции, было подвергнуто сомнению [17]. [c.483]

    Инсулин (гл. 4, разд. 9,7 гл. 5, разд. В, 5, дополнение И-В), вероятно, в комбинации с хромом (дополнение 11-Г) повышает скорость усвоения глюкозы мышцами и другими тканями. Глюкагон (гл 6, разд. Е, 5)—пептидный гормон, состоящий из 29 аминокислотных остатков, действует в первую очередь на клетки печени. Глюкагон выделяется а-клетками островков Лангерганса поджелудочной железы, т. е. теми же клетками, которые продуцируют инсулин. Однако действие глюкагона антагонистично действию инсулина, поскольку он повышает содержание глюкозы в крови, стимулируя расщепление гликогена печени. Он стимулирует также процесс глюконеогенеза, причем оба эти эффекта опосредованы действием циклической АМР [46]. Глюкокортикои-ды (гл. 12, разд. И, 3,6) ускоряют процесс глюконеогенеза и накопление глигогена в печени при помощи механизмов, рассмотренных в разд. Е, 7. [c.504]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    Глюконеогенез в печени сильно ускоряется глюкагоном и адреналином. Эффекты, вызываемые циклическим АМР, могут включать стимуляцию фруктозо-1,6-дифосфатазы и ингибирование фосфофруктокина-зы [46]. Влияние на взаимодействие между пируватом и РЕР, которое также имеет место, может быть непрямым и состоять в стимуляции а-кетоглутаратного метаболизма. [c.513]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикиназы —ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредованно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существуют и различия в физиологическом действии в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные М-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот. [c.272]


Смотреть страницы где упоминается термин Глюконеогенез: [c.54]    [c.176]    [c.590]    [c.590]    [c.316]    [c.410]    [c.583]    [c.584]    [c.482]    [c.484]    [c.512]    [c.521]    [c.17]    [c.119]   
Смотреть главы в:

Биохимия ТОМ 2 -> Глюконеогенез


Биохимия Том 3 (1980) -- [ c.0 , c.482 , c.484 ]

Биологическая химия Изд.3 (1998) -- [ c.269 , c.277 , c.338 , c.339 , c.340 , c.548 ]

Органическая химия (1979) -- [ c.700 , c.702 ]

Микробиология Издание 4 (2003) -- [ c.87 ]

Биологическая химия (2002) -- [ c.372 ]

Биохимия (2004) -- [ c.271 ]

Химия Краткий словарь (2002) -- [ c.83 ]

Молекулярная биология клетки Том5 (1987) -- [ c.105 , c.106 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.587 , c.602 , c.603 , c.604 , c.605 , c.606 , c.607 , c.608 , c.609 , c.610 , c.611 , c.754 ]

Общая микробиология (1987) -- [ c.248 , c.249 , c.250 , c.251 , c.252 , c.495 ]

Метаболические пути (1973) -- [ c.16 , c.17 , c.23 ]

Основы биологической химии (1970) -- [ c.283 , c.285 , c.299 , c.303 ]

Стратегия биохимической адаптации (1977) -- [ c.53 , c.55 ]

Биохимический справочник (1979) -- [ c.180 ]

Микробиология (2006) -- [ c.219 ]

Биология Том3 Изд3 (2004) -- [ c.338 , c.345 , c.349 , c.425 , c.426 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.107 , c.108 ]

Биохимия человека Т.2 (1993) -- [ c.168 , c.175 , c.178 , c.179 , c.182 , c.196 , c.199 , c.214 , c.215 , c.216 , c.256 , c.257 , c.294 , c.296 , c.298 , c.312 ]

Биохимия человека Том 2 (1993) -- [ c.168 , c.175 , c.178 , c.179 , c.182 , c.196 , c.199 , c.214 , c.215 , c.216 , c.256 , c.257 , c.294 , c.296 , c.298 , c.312 ]

Микробиология Изд.2 (1985) -- [ c.73 ]

Основы ферментативной кинетики (1979) -- [ c.162 , c.163 , c.197 ]

Физиология растений (1989) -- [ c.22 , c.145 , c.164 ]

Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.118 , c.407 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.107 , c.108 ]

Биологическая химия (2004) -- [ c.264 , c.273 , c.402 , c.413 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.105 , c.106 , c.107 , c.108 , c.109 , c.112 , c.287 ]




ПОИСК







© 2025 chem21.info Реклама на сайте