Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства полиамидных волокон плотность

    Полиамидные волокна обладают комплексом ценных свойств, определяющих целесообразность, а в ряде случаев необходимость их широкого использования для изготовления разнообразных изделий. Остановимся на показателях, характеризующих основные свойства полиамидных волокон, — прочность при разрыве, эластичность, истираемость, гигроскопичность, плотность, термо-, светостойкость, однородность структуры и др. [c.91]

    Полиамидные волокна способны вытягиваться на холоду благодаря скольжению отдельных кристаллитов под действием небольших усилий. При холодном вытягивании с кратностью 3—3,5 образуется шейка . При г = 2,8—3,1 получается наиболее неравномерное волокно. Поэтому при многоступенчатом вытягивании кратность вытяжки на первой ступени должна быть ниже 2 или. больше 3,2. По той же причине физические свойства вытянутых полиамидных волокон (плотность, скорость диффузии красителя, фазовое состояние и форма кристаллов) сильно зависят от величины вытяжки и резко изменяются при кратности вытяжки сверх [c.300]


    Волокно из поливинилового спирта обладает следующими свойствами Прочность волокна в сухом состоянии составляет от 18 до 70 ркм, удлинение — от 15 до 30%. В мокром состоянии прочность его снижается на 10—15%, а удлинение увеличивается до 20—40%. Плотность волокна достигает 1,26— 1,30 г/см . Модуль эластичности волокна превышает в 3—4 раза модуль волокна анид и в 1,5—2 раза волокна лавсан. Устойчивость к истиранию у винола почти такая же высокая, как у полиамидных волокон. [c.499]

    Полиолефиновые волокна обладают ценным комплексом свойств низкой плотностью, высокой прочностью и химической стойкостью к щелочам, кислотам и органическим растворителям. Такое сочетание свойств характерно только для полиолефиновых волокон (полиэфирные и полиамидные волокна, обладая высокой прочностью, не стойки к действию кислот и щелочей и имеют высокую плотность). [c.494]

    При термофиксации полиамидных волокон происходят глубокие структурные преобразования, выражающиеся в изменении ориентации и формы макромолекул в аморфных областях, в увеличении плотности, в значительном снижении коэффициента диффузии красителей и набухания волокна в серной кислоте и других средах, повышении кристалличности за счет уменьшения доли аморфной фазы, уменьшении размера пор и внутренней поверхности волокна и т. п. Степень и скорость этих изменений различны в зависимости от способа проведения термофиксации волокон (в свободном или натянутом состоянии и, особенно, в сухом нагретом воздухе или в среде водяного пара). В результате улучшаются основные свойства волокон — прочность, удлинение, модуль деформации, усадка в кипящей воде и др. [c.311]

    Развитие авиационной и космической техники привело к необходимости создания ароматических полиамидов с еще более высокими эксплуатационными свойствами. В 1970 г. фирма Ои РоЩ на основе полиамида, полученного низкотемпературной конденсацией дихлорангидрида терефталевой кислоты с п-фенилендиамином, разработала полиамидное волокно кевлар (Кеу1аг), а в 1973 г. в США было организовано первое производство его мощностью 2700 т в год [16]. Отличительными особенностями этого волокна являются очень высокая прочность и значительно более высокий начальный модуль, чем у стали и стекловолокна. Благодаря более низкой плотности по сравнению со стальной проволокой и большей прочности (почти в пять раз превышающей прочность стального корда) удалось значительно уменьшить массу автомобильных и авиационных шин, армированных волокном кевлар (по сравнению с металлокордом). По термостойкости это волокно аналогично волокну номекс. Оно начинает разлагаться при температурах выше 300 °С, в то время как максимальная температура эксплуатации автомобильных и авиационных шин не превышает 200-250 °С. Волокно кевлар применяется также для производства армированных пластических масс, парашютных строп для космических кораблей, прочных якорных канатов, нефтяных шлангов и др. [17]. [c.11]


    В настоящее время чистая ТФЕ мироко применяется также в производстве термостойкого полиамидного волокна найлон 6Т, которое по плотности, гигроскопичности, устойчивости к истиранию и эластичности аналогично найлону 6,6, а по температуре плавления и термостойкости (320-350°) превосходит его, что делает найлон 6Т перспективным для изготовления тайного корда. Подобными свойствами характеризуется другое новое термостойкое волокно "оксалон", составной часть которого является чистая ТФК. Терефталевая кислота используется также в производстве ряда отечественных волокон, пленок, лаков (сульфон-4Т, фенилов, терлон и др.)  [c.6]

    Волокно лавсан отличается высокой степенью несминаемо-сти, устойчивостью к истиранию (по этому показателю лавсан приближается к полиамидным волокнам), высоким начальным модулем, большой светостойкостью (уступает только волокну нитрон), хорошими диэлектрическими свойствами, стойкостью к кислотам, окислителям и восстановителям. Плотность волокна лавсан составляет 1,36—1,38 [c.472]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    В Советском Союзе выпускается полиэфирная нить с повышенными адгезионными свойствами под маркой лавсан-А. Способ [115, 116] заключается в обработке нитей при формовании препарацией, в состав которой входят блокированные диизоцианаты, эпоксидная смола, замасливающие, антистатические и поверхностно-активные вещества. Требуемый уровень адгезии обеспечивается при нанесении на поверхность волокна около 0,03% суммарного количества блокдиизоцианата и эпоксидной смолы. Адгезионные свойства нитей лавсан-А проявляются после термообработки. По прочности связи с резиной после пропитки латексно-резорциноформальдегидным составом нити лавсан-А линейной плотности 111 текс находятся на уровне полиамидного корда и незначительно уступают вискозному корду, что видно из приведенных ниже данных  [c.239]

    Корд из синтетического высокопрочного высокомодульного волокна СВМ. Корд из высокомодульного и высокоэластичного волокна СВМ сочетает свойства металлического корда (выс01кие прочность и модуль, низкие удлинения при разрыве) с лучшими показателями полиамидного корда (высокое сопротивление утомлению, малая плотность, высокая коррозионная стойкость). [c.67]

    Винол по ряду свойств приближается к упрочненным гидратцеллюлозным волокнам, а по некоторым имеет преимущество перед ними (меньшая плотность, более высокая эластичность и прочность, стойкость к действию кислот и щелочей). Из всех синтетических волокон волокно винол имеет самую высокую гигроскопичность и приближается по этому показателю к хлопку. Модуль растяжения поливинилспиртового волокна в 2—3 раза выше, чем полиамидного н в 1,5 раза превышает модуль полиэфирного волокна. Поливинилспиртовое волокно значительно растягивается при температуре выше 120° С, что является существенным недостатком в случае применения его для производства корда. Предполагается, что корд винол наиболее применим в изделиях, испытывающих малые нагрузки. Его применяют для изготовления мото- и велошин и шин для сельскохозяйственных машин. [c.518]

    Области применения полиформальдегидных волокон пока не определены. Это волокно не обладает какими-либо специфическими ценными свойствами. Пониженная температура плавления волокна и соответственно более узкий температурный интервал, в котором могут быть использованы изделия из него, а также повышенная плотность и низкая гигроскопичность ограничивают области использования полиформальдегидного волокна (по сравнению с другими синтетическими гетероцепными волокнами). По-видимому, в некоторых случаях полиформальдегидное волокно, учитывая его высокую прочность, может заменить полиамидное и полипропиленовое волокна. Целесообразность этого будет в основном определяться экономикой — стоимостью, полимера и получаемого из негоУ волокна. Дальнейшие исследования в этом направлении, а также проведение технико-экономических исследований, и особенно сравнение свойств разных типов гетероцепных синтетических волокон и поведения их в эксплуатации, должны внести ясность в вопрос о масштабах производства и ассортименте изделий, для изготовления которых целесообразно использовать полиформальдегид-ные волокна. [c.178]


    Из табл. 21 видно, что по некоторым важным показателям полиолеф иновые ВОлокна не только не уступают найлону 6,6, но даже превосходят его (плотность, прочность, обратимые деформации). Однако по одному из основных свойств — теплостойкости— эти волокна хуже полиамидного. Очевидно, что для производства кордной нити они непригодны. Но в других областях, где этот показатель не является решающим, нолиолефи-новые волокна. могут быть применены с успехом. [c.502]

    В последние годы все большее применение находят синтетические волокна (полиамидные, полиэфирные, полиакрилони-трильные). Пластмассы, наполненные этими волокнами, характеризуются высокой коррозионной и химической стойкостью, малым коэффициентом трения и высокой износостойкостью. Недостаток этих наполнителей — невысокая теплостойкость и ограниченный выбор полимеров для наполнения, так как многие из них могут влиять на структуру и механические свойства волокна. Для повышения теплостойкости можно использовать углеродные (графитизированные) нити, которые выдерживают температуру выше 2000 °С. Их получают нагреванием полимерных волокон в среде инертного газа до тех пор, пока в результате отщепления атомных группировок от основных цепей не образуются волокна, состоящие из графита. Такие волокна обладают высокими гибкостью и прочностью при низкой плотности, что позволяет получать при их использовании прочные и нехрупкие полимерные материалы. [c.24]


Смотреть страницы где упоминается термин Свойства полиамидных волокон плотность: [c.183]    [c.336]    [c.231]    [c.231]    [c.216]    [c.231]    [c.159]    [c.341]    [c.154]   
Полиамидные волокна (1976) -- [ c.245 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Полиамидные волокна

Свойства плотность



© 2025 chem21.info Реклама на сайте