Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидные цепи, пространственное расположение

    Каждому белку присущи строго определенная последовательность аминокислот в полипептидной цепи и определенная пространственная структура. В связи с этим у белков различают четыре уровня структурной организации первичная структура соответствует последовательности остатков аминокислот в полипептидной цепи вторичная структура — расположению полипептидной цепи в пространстве при закручивании ее в спираль за счет водородных связей между группами СО и ЫН разных участков цепи третичная структура определяет, каким образом сворачиваются полипептидные цепи в клубки (субъединицы) путем образования связей, ионов с участием свободных амино- и карбоксигрупп на взаимо- [c.310]


    На рис. 15.15 приведена структура протеолитического фермента карбоксипептидазы А. Полипептидная цепь этого фермента образована 307 аминокислотными остатками и содержит один ион цинка. В цепи имеется несколько а-спиральных участков, а также несколько искривленных участков складчатого слоя (около центра молекулы). Каталитически активный центр фермента расположен рядом с атомом цинка. Пространственная структура части молекулы лизоцима (этот фермент, обнаруженный в слезах и яичном белке, защищает организм от инфекций, гидролизуя полисахариды клеточных стенок бактерий) вместе с [c.445]

    ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Водородные связи играют основную роль в определении конформации полипептидной цепи. Спираль — наиболее высокоорганизованный тип конформации отдельной полипептидной цепи] ъ-аминокислот. Она определяется пространственным расположением следующих атомов а-аминокислот, составляющих цепь 1) атома углерода карбонильной группы, 2) а-углеродного атома и 3) атома азота а-аминогруппы. Наиболее устойчивой иа различных типов спирали является [c.408]

    Ной пространственной конформации беЛковой молекулы и состоят из аминокислотных остатков, не расположенных последовательно в полипептидной цепи, но благодаря укладке последней пространственно сближенных. В отличие от них линейные детерминанты представляют собой пептидные сегменты из 5—8 аминокислотных остатков. При изучении антигенной структуры фермента определяют структуры его антигенных детерминант путем изучения взаимодействия антител с пептидными фрагментами фермента. [c.326]

Рис. 15.4. Пространственная модель складчатого слоя с антипараллельным расположением полипептидных цепей. Рис. 15.4. <a href="/info/33158">Пространственная модель</a> <a href="/info/71120">складчатого слоя</a> с <a href="/info/1813236">антипараллельным расположением</a> полипептидных цепей.
    Вирусы представляют собой комплексы, содержащие молекулу нуклеиновой кислоты и большое число белковых молекул, образующих определенную трехмерную структуру. Вирусы растений содержат РНК, вирусы животных могут содержать либо ДНК, либо РНК- Хорошо изучен вирус растительного происхождения — вирус табачной мозаики, вызывающий заболевание листьев табака. Молекулярная масса вируса около 50 млн, общий состав — 94—95 % белка и 5—6 % РНК. Пространственная структура вируса представляет собой цепь РНК, окруженную расположенными в определенном порядке полипептидными цепями. [c.448]


    Как видно из рис. 15.3, в структурах типа складчатого слоя водородные связи, соединяющие соседние полипептидные цепи, расположены в одном слое. На этом рисунке цепи выглядят так, как будто их можно полностью вытянуть с сохранением расположения амидных групп в плоскости слоя. Однако путем расчета и построения модели было показано, что длины связей и их углы не допускают образования таких плоских слоев. Структуры, удовлетворяющие пространственным требованиям, можно получить при изгибании цепей у а-атома углерода, как это показано на рис. 15.4 и 15.5. Структуры типа складчатого слоя обнаружены в белках шелка, растянутых волосах и в глобулярных белках. [c.431]

    РИС. 4-13. Структура инсулина свиньи. А. Аминокислотная последовательность А- и В-цепей, связанных друг с другом дисульфидными мостиками. Б. Пространственное расположение остовов полипептидных цепей в молекуле инсулина по данным рентгеноструктурного анализа. На рисунке указано также расположение некоторых боковых ароматических групп (см. также рис. 4-14 и 4-15). В. Схема, иллюстрирующая упаковку шести [c.292]

    Пространственное расположение полипептидной цепи [c.375]

    При эмпирическом подходе и обсуждении пространственного строения белковых молекул речь всегда идет лишь о конфигурации полипептидной цепи при полном игнорировании конформационных возможностей боковых цепей аминокислотных остатков. Между тем, именно взаимодействия боковых цепей, в которые входят около двух третей атомов молекулы белка, ответственны в наибольшей степени за стабилизацию и уникальные физические и биохимические свойства нативной конформации природной гетерогенной аминокислотной последовательности. В силу этого обстоятельства на локальных участках белковой цепи в зависимости от аминокислотного порядка возможна реализация самых разнообразных структур, причем, главным образом, нерегулярных. Представление о том, что у гетерогенной последовательности наиболее компактными, энергетически предпочтительными во всех случаях оказываются только структуры с регулярной основной цепью, не подкрепляется физическими соображениями общего характера, противоречит экспериментальным данным и результатам теоретического анализа. У белков с нерегулярным расположением вдоль цепи боковых радикалов пространственные структуры с регулярными формами основной цепи, очевидно, не могут во всех случаях обеспечить максимальное число эффективных внутримолекулярных контактов, а поэтому не могут быть всегда самыми стабильными. [c.80]

    Анализ рентгенограмм кристаллов белков подтверждает полипептид-ную структуру белков. Таким образом, рентгеноструктурный анализ ири разрешении 0,15-0,2 нм позволяет не только вычислить межатомные расстояния и размеры валентных углов между атомами С, Н, О и К, но и увидеть картину общего расположения аминокислотных остатков в полипептидной цепи и пространственную ее ориентацию (конформацию). [c.51]

    Таким образом, линейная одномерная структура полипептидной цепи (т.е. последовательность аминокислотных остатков, обусловленная кодом белкового синтеза) наделена информацией другого типа—конформацион-ной, которая представляет собой образование белковой молекулы строго заданной формы с определенным пространственным расположением отдельных ее частей. Другими словами, третичная—объемная—структура белковой молекулы детерминирована аминокислотной последовательностью полипептидной цепи, а более конкретно—размером, формой и полярностью радикалов аминокислотных остатков. Эти представления могут служить основой для предсказания конформации белковой молекулы на основании аминокислотной последовательности. Следует указать, однако, что до сих пор представляется интригующей загадкой механизм этой тесной и тонкой связи между аминокислотной последовательностью и трехмерной структурой белковой молекулы. Оказывается, иногда полипептиды почти с одинаковыми последовательностями образуют разные структуры и, наоборот, полипептиды с разными последовательностями формируют одинаковую трехмерную структуру. [c.68]

    Вместе с тем в этих исследованиях выявляются важные особенности спиральных участков белковой цепи в глобуле. Анализ участков А, В, Е, G и Н а-спиралей свидетельствует о периодическом расположении в них неполярных аминокислотных остатков [111]. Спиральные последовательности ориентированы в глобуле таким образом, что эти остатки оказываются расположенными именно в ядре глобулы. Спирализация полипептидной цепи термодинамически выгодна для целого ряда аминокислотных остатков, так как она обеспечивает насыщение водородных связей. Но а-спирализация (равно как и образование Р-форм) определяется, вместе с тем, и гидрофобными взаимодействиями. Иными словами, вторичная структура стабилизуется пространственной структурой (третичной структурой) белка. [c.233]


    Цепи пептидов и белков принимают в пространстве определенную более или менее компактную форму. Уникальная особенность белковых молекул заключается в том, что они имеют, как правило, четкую пространственную структуру, или конформацию. Ранее на примере более простых соединений было показано, что конформация — это пространственное расположение атомов в молекуле, обусловленное вращением вокруг простых связей (см. 2.1.7). В данном случае понятие конформации применяется для пространственного строения длинных полипептидных цепей. Как только молекула ока- [c.417]

    Исследование фибриллярных белков, о которых шла речь в этой главе, позволяет сделать три главных вывода, касающиеся структуры белков. Прежде всего, мы видим, что белки обладают не только первичной структурой, т.е. ковалентным остовом, но и характерной вторичной структурой, которая определяется пространственным расположением последовательных аминокислотных остатков, образующих полипептидную цепь. [c.181]

    Структурная основа связывания антигенных пептидов молекулами МНС класса I стала гораздо понятнее при сравнении молекул HLA-A2 и HLA-Aw68. Их аминокислотные последовательности различаются в 13 позициях по шести замен имеет каждый из доменов а, и aj и по одной — домены Оз (в позиции 245, определяющей взаимодействие с DS). Десять вариабельных остатков а,- и а2-доменов расположены в той части тяжелой цепи, которая образует дно и боковую стенку антигенсвязывающей полости рис. 7.7). За счет различий в аминокислотной последовательности сравниваемые молекулы HLA существенным образом различаются между собой конфигурацией антигенсвязывающей полости соответственно различаются по строению и связываемые ими пептиды. Следует отметить, что данная полость — это не простое углубление с гладкими стенками, а структура сложной формы, имеющая на внутренней поверхности ряд субцентров связывания в виде складок и карманов, где возможно взаимодействие с боковыми цепями аминокислотных остатков рис. 7.8). Например, боковые цепи или концы антигенных пептидов могут заполнить два кармана, которые открываются под спиралью абдомена. В зависимости от аминокислотных замен в образующих полость полипептидных последовательностях пространственное расположение этих карманов может изменяться (см. рис. 7.8). Такими изменениями определяются различия между молекулами МНС класса I по аффинности связывания антигенных пептидов от величины этой аффинности зависит, в свою очередь, произойдет ли иммунный ответ на данный антиген. [c.121]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Третичная структура уникальна для каждого Ф., однако у однотипных Ф., даже сильно отличающихся по первичной структуре, пространственное расположение цепей м. б. сходным (напр., химотрипсины и субтилизины). Часто в третичной струетуре можно вьщелить отдельные компактные части (домены), соединенные участками полипептидной цепи. Организация в пространстве неск. субъединиц определяет четвертичную сгрукт у Ф. [c.84]

    Под изучением первичной структуры подразумевается исследование чередования аминокислотны с остатков вдоль /полипептидньсх цепей белка. Изучение вторичной структуры — это изучение особенностей пространственного расположения чередующихся друг с другом аминокислотных остатков, которое определяет конфигурацию сравнительно небольших фрагментов полипептидных цепей. Вторичная структура по Линдер-штрем-Лангу — это небольшие складки и изгибы пептидной цепи. Они могут, например, привести к тому, что некоторая часть пептидной цепи примет форму спирали. Однако шаг такой спирали, ее толщина будут заметно меньше размеров самой молекулы. Вторичная структура в белках стабилизируется водородными связями между СО- и МН-группами пептидных остатков. Поэтому, исследуя вторичную структуру в химическом аспекте, мы изучаем особенности водородных связей между СО-и МН-группами пептидных остатков. [c.535]

    Как полагают Меклер и Идлис, "обязательный компонент любой А-А-связи - водородная связь, образующаяся между полярной группой боковой цепи одного аминокислотного остатка и карбонилом остова полипептидной цепи - компонентом аминокислотного остатка-партнсра" [352. С. 43]. Вокруг таких водородных связей имеются гидрофобные рубашки, "защищающие их от атаки молекулами растворителя, в первую очередь, воды. Таким образом Природа обеспечивает образование особых, ранее неизвестных, специфических связей между аминокислотами - Л-Л-связей" [352. С. 44]. Из описанной структурной модели A-A-комплекса, однотипной для всех 26 пар аминокислотных остатков, не ясно, почему водородная связь является "обязательным компонентом любой A-A-связи". Это исключено по целому ряду причин. Во-первых, стабилизирующая энергия водородной связи, даже если она экранирована от контактов с водой, во много раз уступает суммарной энергии других видов невалентных взаимодействий, прежде всего, дисперсионной энергии. Во-вторых, точечное взаимодействие двух атомов этого "обязательного компонента" не может обеспечить стереокомплементарность остатков А и A. Напротив, как хорошо известно [353], взаимное расположение групп С = 0 и Н-О (H-N) определяется не столько самой водородной связью, сколько потенциальной энергетической поверхностью окружающих ее атомных групп. Она реализуется только в том случае, если удовлетворяет требованиям других видов невалентных взаимодействий, среди которых наибольшие ограничения накладывают ван-дер-ваальсовы взаимодействия. В-третьих, сближенность акцептора и донора протона требует определенной ориентации друг относительно друга основной цепи одного остатка и боковой цепи другого, что должно лишать конформационной свободы оба аминокислотных остатка и вести к реализации у всех пар A-A-связей данного типа одинаковых конформационных состояний. Такая унификация пространственного строения A-A-комплексов, как отмечалось, противоречит эксперименту. И наконец, в-четвертых, с предложенной моделью A-A-связи не согласуется четко проявляющаяся в трехмерных структурах белков тенденция боковых цепей заряженных остатков (Arg, Lys, Glu, Asp), находящихся на поверхности глобулы, принимать полностью развернутые конформации и ориентироваться в [c.536]

    В данном разделе специфичность протеолитических ферментов рассматривается применительно к селективному расщеплению полипептидов и белков с известным порядком расположения аминокислот. Следует, однако, иметь в виду, что порядок расположения аминокислотных остатков в цепи не определяет полностью пространственные взаимодействия. При свертывании цепи и появлении, например, структуры а-спи-рали боковые цепи последовательно расположенных аминокислотных остатков выступают из спирали через определенные промежутки и повернуты друг к другу на угол, ра-вный примерно 100° по отношению к оси спирали. Свобода вращения боковых цепей обусловливает значительное разнообразие занимаемых ими положений они могут быть удалены от другой- боковой цепи или пептидной связи, расположенных на расстоянии нескольких аминокислотных остатков в главной цепи, на такое же расстояние, как и от своего аминокислотного остатка или пептидной связи. Кроме того, возможно взаимодействие между боковыми цепями и пептидными связями, расположенными рядом геометрически, но принадлежащими к значительно удаленным друг от друга в цепи аминокислотным остаткам или даже к другой полипептидной цепи молекул. Таким образом, знание пространственной конфигурации может оказаться столь же важным при решении рассматриваемого вопроса, как и знание последовательности расположения аминокислот. [c.179]

    Однако в этом расчете была учтена только химическая сторона процесса. Важно посмотреть, насколько данная оценка может измениться, если учесть энтропийный гфоигрыш за счет упорядоченного расположения аминокислотных остатков вдоль цепи синтезируемого белка, а также за счет фиксированной пространственной структуры белка. Оказывается, учет детерминированного расположения аминокислотных остатков в полипептидной цепи вносит сравнительно небольшую поправку — около -1-10 кДж (-f2,5 ккал) на моль аминокислоты. Что касается энтропийного фактора за счет упорядочения пространственной структуры синтезируемого полипептида, то здесь энтропийный проигрыш (понижение энтропии) более существен, но он компенсируется энтальпийным выигрышем в результате нековалентных взаимодействий аминокислотных остатков. Таким образом, в любом случае синтез белка сопровождается диссипацией большого количества свободной энергии. [c.61]

    Эта грубая схема, во многом сходная с предложенным строением мицеллы детергента [9], достаточно ясно показывает, как удаленные части полипептидной цепи сблил<аются в наиболее выгодной конформации. Рассмотрим участок первичной структуры белка-фермента (рис. 24.1.1). Процесс сворачивания, вызывающий сближение гидрофобных групп, собирает в этих точках как полипептидную цепь, так и боковые радикалы близлежащих аминокислотных остатков. Если последние несут функциональные группы, то можно легко заметить, что на данном участке структуры белка может возникнуть весьма точное пространственное расположение нескольких таких групп. Таким образом, в процессе сворачивания в характеристическую стабильную конформацию линейного полипептида, образовавшегося в процессе биосинтеза белка, формируется активный центр фермента. По-видимому, именно таким образом возникли первые ферменты, когда оказывалось, что определенные расположения функциональных групп, случайно возникшие указанным выше путем, обладали важными каталитическими свойствами. [c.452]

    Поскольку все ферменты являются белками, для них характерны четыре уровня структурной организации молекулы. Наличие же каталитических свойств придает им ряд особенностей, в том числе наиболее важную - устойчивость и изменчивость. Под первичной структурой понимают последовательность расположения аминокислотных остатков в цепи. Вторичная структура определяет характер укладки полипептидной цепи, так как молекулы фермента в большинстве имеют глобулярную форму, при этом витки спирали связаны водородными связями. Третичная структура определяется как способ укладки полипептидной цепи, с образованием компактной структуры и значительного числа связей между группами в различных участках цепи и нескольких диеульфидных мостиков между определенными остатками цистеина [I]. Четвертичная структура характеризует способ пространственного расположения отдельных полипептидных цепей. [c.204]

    Вторичная структура белков (как и пептидов) отражает расположение полипептидной цепи в пространстве. Характер пространственной структуры полипептидной цепи обусловлен дополнительным образованием пяти типов связей между отдельными аминокислотными остатками, стабилизирующих структуру белковой молекулы 1) дисульфидные мостики, 2) водородные связи, 3) ионные связи, 4) гидрофобные связи и 5) гидратируемые группы при этом связьшаемые остатки могут находиться и в достаточно удалённых друг от друга участках полипептидной цепи. [c.67]

    Вторичная структура описывается пространственной ориента-ей основной полипептидной цепи, третичная — трехмерной ар-гектурой всей белковой молекулы. Как вторичная, так и тре-1ная структуры связаны с упорядоченным расположением мак-молекулярной цепи в пространстве. [c.361]

    Итак, мы имеем четыре типа раз-личньк ограничений, налагаемых на пространственную конформацию полипептидной цепи 1) жесткость и транс-конфигурация пептвдньк связей, 2) электростатическое отталкивание (или притяжение) аминокислотных остатков, содержащих заряженные К-группы 3) близкое расположение в цепи громоздких [c.171]


Смотреть страницы где упоминается термин Полипептидные цепи, пространственное расположение: [c.23]    [c.42]    [c.79]    [c.98]    [c.129]    [c.223]    [c.165]    [c.101]    [c.101]    [c.129]    [c.363]    [c.45]    [c.546]    [c.128]    [c.125]    [c.165]    [c.167]    [c.172]   
Основы стереохимии и конформационного анализа (1974) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте